首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assembly and maintenance of cilia require intraflagellar transport (IFT), a microtubule-dependent bidirectional motility of multisubunit protein complexes along ciliary axonemes. Defects in IFT and the functions of motile or sensory cilia are associated with numerous human ailments, including polycystic kidney disease and Bardet-Biedl syndrome. Here, we identify a novel Caenorhabditis elegans IFT gene, IFT-associated gene 1 (ifta-1), which encodes a WD repeat-containing protein with strong homology to a mammalian protein of unknown function. Both the C. elegans and human IFTA-1 proteins localize to the base of cilia, and in C. elegans, IFTA-1 can be observed to undergo IFT. IFTA-1 is required for the function and assembly of cilia, because a C. elegans ifta-1 mutant displays chemosensory abnormalities and shortened cilia with prominent ciliary accumulations of core IFT machinery components that are indicative of retrograde transport defects. Analyses of C. elegans IFTA-1 localization/motility along bbs mutant cilia, where anterograde IFT assemblies are destabilized, and in a che-11 IFT gene mutant, demonstrate that IFTA-1 is closely associated with the IFT particle A subcomplex, which is implicated in retrograde IFT. Together, our data indicate that IFTA-1 is a novel IFT protein that is required for retrograde transport along ciliary axonemes.  相似文献   

2.
In differentiated human cells, primary cilia fulfill essential functions in converting mechanical or chemical stimuli into intracellular signals. Formation and maintenance of cilia require multiple functions associated with the centriole-derived basal body, from which axonemal microtubules grow and which assembles a gate to maintain the specific ciliary proteome. Here we characterize the function of a novel centriolar satellite protein, synovial sarcoma X breakpoint–interacting protein 2 (SSX2IP), in the assembly of primary cilia. We show that SSX2IP localizes to the basal body of primary cilia in human and murine ciliated cells. Using small interfering RNA knockdown in human cells, we demonstrate the importance of SSX2IP for efficient recruitment of the ciliopathy-associated satellite protein Cep290 to both satellites and the basal body. Cep290 takes a central role in gating proteins to the ciliary compartment. Consistent with that, loss of SSX2IP drastically reduces entry of the BBSome, which functions to target membrane proteins to primary cilia, and interferes with efficient accumulation of the key regulator of ciliary membrane protein targeting, Rab8. Finally, we show that SSX2IP knockdown limits targeting of the ciliary membrane protein and BBSome cargo, somatostatin receptor 3, and significantly reduces axoneme length. Our data establish SSX2IP as a novel targeting factor for ciliary membrane proteins cooperating with Cep290, the BBSome, and Rab8.  相似文献   

3.
In addition to their role in motility, eukaryotic cilia serve as a distinct compartment for signal transduction and regulatory sequestration of biomolecules. Recent genetic and biochemical studies have revealed an extraordinary diversity of protein complexes involved in the biogenesis of cilia during each cell cycle. Mutations in components of these complexes are at the heart of human ciliopathies such as Nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS) and Joubert syndrome (JBTS). Despite intense studies, proteins in some of these complexes, such as the NPHP1-4-8 and the MKS, remain poorly understood. Using a combination of computational analyses we studied these complexes to identify novel domains in them which might throw new light on their functions and evolutionary origins. First, we identified both catalytically active and inactive versions of transglutaminase-like (TGL) peptidase domains in key ciliary/centrosomal proteins CC2D2A/MKS6, CC2D2B, CEP76 and CCDC135. These ciliary TGL domains appear to have originated from prokaryotic TGL domains that act as peptidases, either in a prokaryotic protein degradation system with the MoxR AAA+ ATPase, the precursor of eukaryotic dyneins and midasins, or in a peptide-ligase system with an ATP-grasp enzyme comparable to tubulin-modifying TTL proteins. We suggest that active ciliary TGL proteins are part of a cilia-specific peptidase system that might remove tubulin modifications or cleave cilia- localized proteins, while the inactive versions are likely to bind peptides and mediate key interactions during ciliogenesis. Second, we observe a vast radiation of C2 domains, which are key membrane-localization modules, in multiple ciliary proteins, including those from the NPHP1-4-8 and the MKS complexes, such as CC2D2A/MKS6, RPGRIP1, RPGRIP1L, NPHP1, NPHP4, C2CD3, AHI1/Jouberin and CEP76, most of which can be traced back to the last eukaryotic ancestor. Identification of these TGL and C2 domains aid in the proper reconstruction of the Y-shaped linkers, which are key structures in the transitional zone of cilia, by allowing precise prediction of the multiple membrane-contacting and protein-protein interaction sites in these structures. These findings help decipher key events in the evolutionary separation of the ciliary and nuclear compartments in course of the emergence of the eukaryotic cell.  相似文献   

4.
In addition to their role in motility, eukaryotic cilia serve as a distinct compartment for signal transduction and regulatory sequestration of biomolecules. Recent genetic and biochemical studies have revealed an extraordinary diversity of protein complexes involved in the biogenesis of cilia during each cell cycle. Mutations in components of these complexes are at the heart of human ciliopathies such as Nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS) and Joubert syndrome (JBTS). Despite intense studies, proteins in some of these complexes, such as the NPHP1-4-8 and the MKS, remain poorly understood. Using a combination of computational analyses we studied these complexes to identify novel domains in them which might throw new light on their functions and evolutionary origins. First, we identified both catalytically active and inactive versions of transglutaminase-like (TGL) peptidase domains in key ciliary/centrosomal proteins CC2D2A/MKS6, CC2D2B, CEP76 and CCDC135. These ciliary TGL domains appear to have originated from prokaryotic TGL domains that act as peptidases, either in a prokaryotic protein degradation system with the MoxR AAA+ ATPase, the precursor of eukaryotic dyneins and midasins, or in a peptide-ligase system with an ATP-grasp enzyme comparable to tubulin-modifying TTL proteins. We suggest that active ciliary TGL proteins are part of a cilia-specific peptidase system that might remove tubulin modifications or cleave cilia- localized proteins, while the inactive versions are likely to bind peptides and mediate key interactions during ciliogenesis. Second, we observe a vast radiation of C2 domains, which are key membrane-localization modules, in multiple ciliary proteins, including those from the NPHP1-4-8 and the MKS complexes, such as CC2D2A/MKS6, RPGRIP1, RPGRIP1L, NPHP1, NPHP4, C2CD3, AHI1/Jouberin and CEP76, most of which can be traced back to the last eukaryotic ancestor. Identification of these TGL and C2 domains aid in the proper reconstruction of the Y-shaped linkers, which are key structures in the transitional zone of cilia, by allowing precise prediction of the multiple membrane-contacting and protein-protein interaction sites in these structures. These findings help decipher key events in the evolutionary separation of the ciliary and nuclear compartments in course of the emergence of the eukaryotic cell.  相似文献   

5.
One major milestone in the development of the sea urchin embryo is the assembly of a single cilium on each blastomere just before hatching. These cilia are constructed both from pre-existing protein building blocks, such as tubulin and dynein, and from a number of 9+2 architectural elements that are synthesized de novo at ciliogenesis. The finite or quantal synthesis of certain key architectural proteins is coincident with ciliary elongation and proportional to ciliary length. Upon deciliation, the synthesis of architectural proteins occurs anew, a new cilium grows, and the stores of various building blocks are replenished. This routine of coordinated ciliary gene expression may be replayed experimentally many times without delaying normal development. The ability to regenerate cilia has allowed elucidation of these various protein synthetic relationships and has led to the discovery of the pathways by which membrane-associated tubulin and axoneme-associated architectural proteins are conveyed into the highly compartmentalized growing cilium. The sea urchin embryo thus provides a very convenient model system for studies of ciliary assembly and maintenance, coordinate gene expression and membrane dynamics.  相似文献   

6.
The proteome of the mouse photoreceptor sensory cilium complex   总被引:3,自引:0,他引:3  
Primary cilia play critical roles in many aspects of biology. Specialized versions of primary cilia are involved in many aspects of sensation. The single photoreceptor sensory cilium (PSC) or outer segment elaborated by each rod and cone photoreceptor cell of the retina is a classic example. Mutations in genes that encode cilia components are common causes of disease, including retinal degenerations. The protein components of mammalian primary and sensory cilia have not been defined previously. Here we report a detailed proteomics analysis of the mouse PSC complex. The PSC complex comprises the outer segment and its cytoskeleton, including the axoneme, basal body, and ciliary rootlet, which extends into the inner segment of photoreceptor cells. The PSC complex proteome contains 1968 proteins represented by three or more unique peptides, including approximately 1500 proteins not detected in cilia from lower organisms. This includes 105 hypothetical proteins and 60 proteins encoded by genes that map within the critical intervals for 23 inherited cilia-related disorders, increasing their priority as candidate genes. The PSC complex proteome also contains many cilia proteins not identified previously in photoreceptors, including 13 proteins produced by genes that harbor mutations that cause cilia disease and seven intraflagellar transport proteins. Analyses of PSC complexes from rootletin knock-out mice, which lack ciliary rootlets, confirmed that 1185 of the identified PSC complex proteins are derived from the outer segment. The mass spectrometry data, benchmarked by 15 well characterized outer segment proteins, were used to quantify the copy number of each protein in a mouse rod outer segment. These results reveal mammalian cilia to be several times more complex than the cilia of unicellular organisms and open novel avenues for studies of how cilia are built and maintained and how these processes are disrupted in human disease.  相似文献   

7.
Cilia are ubiquitous in mammalian cells. The formation and assembly of cilia depend on the normal functioning of the ciliary transport system. In recent years, various proteins involved in the intracellular transport of the cilium have attracted attention, as many diseases are caused by disorders in cilia formation. Intraflagellar transport 20 (IFT20) is a subunit of IFT complex B, which contains approximately 20 protein particles. Studies have shown that defects in IFT20 are associated with numerous system -related diseases, such as those of the urinary system, cardiovascular system, skeletal system, nervous system, immune system, reproductive system, and respiratory system. This review summarizes current research on IFT20.We describe studies related to the role of IFT20 in cilia formation and discuss new targets for treating diseases associated with ciliary dysplasia.  相似文献   

8.
Primary cilia are sensory, antennae‐like organelles present on the surface of many cell types. They have been involved in a variety of diseases collectively termed ciliopathies. As cilia are essential regulators of cell signaling, the composition of the ciliary membrane needs to be strictly regulated. To understand regulatory processes at the ciliary membrane, we report the targeting of a genetically engineered enzyme specifically to the ciliary membrane to allow biotinylation and identification of the membrane‐associated proteome. Bioinformatic analysis of the comprehensive dataset reveals high‐stoichiometric presence of actin‐binding proteins inside the cilium. Immunofluorescence stainings and complementary interaction proteomic analyses confirm these findings. Depolymerization of branched F‐actin causes further enrichment of the actin‐binding and actin‐related proteins in cilia, including Myosin 5a (Myo5a). Interestingly, Myo5a knockout decreases ciliation while enhanced levels of Myo5a are observed in cilia upon induction of ciliary disassembly. In summary, we present a novel approach to investigate dynamics of the ciliary membrane proteome in mammalian cells and identify actin‐binding proteins as mechanosensitive components of cilia that might have important functions in cilia membrane dynamics.  相似文献   

9.
Cilia play an essential role in protecting the respiratory tract by providing the force necessary for mucociliary clearance. Although the major structural components of human cilia have been described, a complete understanding of cilia function and regulation will require identification and characterization of all ciliary components. Estimates from studies of Chlamydomonas flagella predict that an axoneme contains > or = 250 proteins. To identify all the components of human cilia, we have begun a comprehensive proteomic analysis of isolated ciliary axonemes. Analysis by two-dimensional (2-D) PAGE resulted in a highly reproducible 2-D map consisting of over 240 well resolved components. Individual protein spots were digested with trypsin and sequenced using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Peptide matches were obtained to 38 potential ciliary proteins by this approach. To identify ciliary components not resolved by 2-D PAGE, axonemal proteins were separated on a one-dimensional gel. The gel lane was divided into 45 individual slices, each of which was analyzed by LC/MS/MS. This experiment resulted in peptide matches to an additional 110 proteins. In a third approach, preparations of isolated axonemes were digested with Lys-C, and the resulting peptides were analyzed directly by LC/MS/MS or by multidimensional LC/MS/MS, leading to the identification of a further 66 proteins. Each of the four approaches resulted in the identification of a subset of the proteins present. In total, sequence data were obtained on over 1400 peptides, and over 200 potential axonemal proteins were identified. Peptide matches were also obtained to over 200 human expressed sequence tags. As an approach to validate the mass spectrometry results, additional studies examined the expression of several identified proteins (annexin I, sperm protein Sp17, retinitis pigmentosa protein RP1) in cilia or ciliated cells. These studies represent the first proteomic analysis of the human ciliary axoneme and have identified many potentially novel components of this complex organelle.  相似文献   

10.
Although protein kinase A (PKA) activation is known to increase ciliary beat frequency in humans the molecular mechanisms involved are unknown. We demonstrate that PKA is associated with ciliary axonemes where it specifically phosphorylates a 23-kDa protein. Because PKA is often localized to subcellular compartments in proximity to its substrate(s) via interactions with A-kinase-anchoring proteins (AKAPs), we investigated whether an AKAP was also associated with ciliary axonemes. This study has identified a novel 28 kDa AKAP (AKAP28)that is highly enriched in airway axonemes. The mRNA for AKAP28 is up-regulated as primary airway cells differentiate and is specifically expressed in tissues containing cilia and/or flagella. Additionally, both Western blot and immunostaining data show that AKAP28 is enriched in airway cilia. These data demonstrate that we have identified the first human axonemal AKAP, a protein that likely plays a role in the signaling necessary for efficient modulation of ciliary beat frequency.  相似文献   

11.
Although the discovery of cilia is one of the earliest in cell biology, the past two decades have witnessed an explosion of new insight into these enigmatic organelles. While long believed to be vestigial, cilia have recently moved into the spotlight as key players in multiple cellular processes, including brain development and homeostasis. This review focuses on the rapidly expanding basic biology of neural cilia, with special emphasis on the newly emerging B9 family of proteins. In particular, recent findings have identified a critical role for the B9 complex in a network of protein interactions that take place at the ciliary transition zone (TZ). We describe the essential role of these protein complexes in signaling cascades that require primary (nonmotile) cilia, including the sonic hedgehog pathway. Loss or dysfunction of ciliary trafficking and TZ function are linked to a number of neurologic diseases, which we propose to classify as neural ciliopathies. When taken together, the studies reviewed herein point to critical roles played by neural cilia, both in normal physiology and in disease.  相似文献   

12.
The cilia of mammalian olfactory receptor neurons (ORNs) represent the sensory interface that is exposed to the air within the nasal cavity. The cilia are the site where odorants bind to specific receptors and initiate olfactory transduction that leads to excitation of the neuron. This process involves a multitude of ciliary proteins that mediate chemoelectrical transduction, amplification, and adaptation of the primary sensory signal. Many of these proteins were initially identified by their enzymatic activities using a membrane protein preparation from olfactory cilia. This so-called "calcium-shock" preparation is a versatile tool for the exploration of protein expression, enzyme kinetics, regulatory mechanisms, and ciliary development. To support such studies, we present a first proteomic analysis of this membrane preparation. We subjected the cilia preparation to liquid chromatography-electrospray ionisation (LC-ESI-MS/MS) tandem mass spectrometry and identified 268 proteins, of which 49% are membrane proteins. A detailed analysis of their cellular and subcellular localization showed that the cilia preparation obtained by calcium shock not only is highly enriched in ORN proteins but also contains a significant amount of nonciliary material. Although our proteomic study does not identify the entire set of ciliary and nonciliary proteins, it provides the first estimate of the purity of the calcium-shock preparation and provides valuable biochemical information for further research.  相似文献   

13.
The primary cilium is a microtubule-based organelle that senses extracellular signals as a cellular antenna. Primary cilia are found on many types of cells in our body and play important roles in development and physiology. Defects of primary cilia cause a broad class of human genetic diseases called ciliopathies. To gain new insights into ciliary functions and better understand the molecular mechanisms underlying ciliopathies, it is of high importance to generate a catalog of primary cilia proteins. In this study, we isolated primary cilia from mouse kidney cells by using a calcium-shock method and identified 195 candidate primary cilia proteins by MudPIT (multidimensional protein identification technology), protein correlation profiling, and subtractive proteomic analysis. Based on comparisons with other proteomic studies of cilia, around 75% of our candidate primary cilia proteins are shared components with motile or specialized sensory cilia. The remaining 25% of the candidate proteins are possible primary cilia-specific proteins. These possible primary cilia-specific proteins include EVC2, INPP5E, and inversin, several of which have been linked to known ciliopathies. We have performed the first reported proteomic analysis of primary cilia from mammalian cells. These results provide new insights into primary cilia structure and function.  相似文献   

14.
As a first step in the biochemical analysis of membrane excitation in wild-type Paramecium and its behavioral mutants we have defined the protein composition of the ciliary membrane of wild-type cells. The techniques for the isolation of cilia and ciliary membrane vesicles were refined. Membranes of high purity and integrity were obtained without the use of detergents. The fractions were characterized by electron microscopy, and the proteins of whole cilia, axonemes, and ciliary membrane vesicles were resolved by SDS polyacrylamide gel electrophoresis and isoelectric focusing in one and two dimensions. Protein patterns and EM appearance of the fractions were highly reproducible. Over 200 polypeptides were present in isolated cilia, most of which were recovered in the axonemal fraction. Trichocysts, which were sometimes present as a minor contaminant in ciliary preparations, were composed of a very distinct set of over 30 polypeptides of mol wt 11,000--19,000. Membrane vesicles contained up to 70 polypeptides of mol wt 15,000--250,000. The major vesicle species were a high molecular weight protein (the "immobilization antigen") and a group of acidic proteins with mol wt similar to or approximately 40,000. These and several other membrane proteins were specifically decreased or totally absent in the axoneme fraction. Tubulin, the major axonemal species, occurred only in trace amounts in isolated vesicles; the same was true for Tetrahymena ciliary membranes prepared by the methods described in this paper. A protein of mol wt 31,000, pI 6.8, was virtually absent in vesicles prepared from cells in exponential growth phase, but became prominent early in stationary phase in good correlation with cellular mating reactivity. This detailed characterization will provide the basis for comparison of the ciliary proteins of wild-type and behavioral mutants and for analysis of topography and function of membrane proteins. It will also be useful in future studies of trichocysts and mating reactions.  相似文献   

15.
CILIA REGENERATION IN TETRAHYMENA AND ITS INHIBITION BY COLCHICINE   总被引:27,自引:18,他引:9       下载免费PDF全文
The cilia of Tetrahymena were amputated by the use of a procedure in which the cells remained viable and regenerated cilia. Deciliated cells were nonmotile, and cilia regeneration was assessed by scoring the percentage of motile cells at intervals following deciliation. After a 30-min lag, the deciliated cells rapidly recovered motility until more than 90% of the cells were motile at 70 min after amputation. Cycloheximide inhibited both protein synthesis and cilia regeneration. This indicated that cilia formation in Tetrahymena was dependent on protein synthesis after amputation. Conversely, colchicine was found to inhibit cilia regeneration without affecting either RNA or protein synthesis. This observation suggested the action of colchicine to be an interference with the assembly of ciliary subunit proteins. The finding that colchicine binds to microtubule protein subunits isolated from cilia and flagella (13) supports this possibility. The potential of the colchicine-blocked cilia-regenerating system in Tetrahymena for studying the assembly of microtubule protein subunits during cilia formation and for isolating ciliary precursor proteins is discussed.  相似文献   

16.
17.
When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.  相似文献   

18.
Cilia or flagella have been around since almost the beginning of life, and have now developed specialized cell-type specific functions from locomotion to acting as environmental sensors participating in cell signalling. Genetic defects affecting cilia result in a myriad of pathological instances, including infertility, obesity, blindness, deafness, skeletal malformations, and lung problems. However, the consistency in which the common kidney cyst is coupled with cilia dysfunction has raised interest in the possibility that ciliary dysfunction might contribute to other neoplasms as well. A suite of recent papers convincingly linking cilia to hedgehog signalling, platelet-derived growth factor signalling, Wnt signalling and the von Hippel-Lindau tumor suppressor protein has rapidly expanded the knowledge base connecting cilia to cancer. We propose that these data support the notion of the cilium as a cellular Watchtower, whose absence can be an initiating event in neoplastic growth. Furthermore, we predict that we are just now seeing the tip of the iceberg, and that the list of cancers associated with altered ciliary signalling will grow exponentially in the next few years.  相似文献   

19.
The primary cilium is a ubiquitous, non-motile microtubular organelle lacking the central pair of microtubules found in motile cilia. Primary cilia are surrounded by a membrane, which has a unique complement of membrane proteins, and may thus be functionally different from the plasma membrane. The function of the primary cilium remains largely unknown. However, primary cilia have important sensory transducer properties, including the response of renal epithelial cells to fluid flow or mechanical stimulation. Recently, renal cystic diseases have been associated with dysfunctional ciliary proteins. Although the sensory properties of renal epithelial primary cilia may be associated with functional channel activity in the organelle, information in this regard is still lacking. This may be related to the inherent difficulties in assessing electrical activity in this rather small and narrow organelle. In the present study, we provide the first direct electrophysiological evidence for the presence of single channel currents from isolated primary cilia of LLC-PK1 renal epithelial cells. Several channel phenotypes were observed, and addition of vasopressin increased cation channel activity, which suggests the regulation, by the cAMP pathway of ciliary conductance. Ion channel reconstitution of ciliary versus plasma membranes indicated a much higher channel density in cilia. At least three channel proteins, polycystin-2, TRPC1, and interestingly, the alpha-epithelial sodium channel, were immunodetected in this organelle. Ion channel activity in the primary cilium of renal cells may be an important component of its role as a sensory transducer.  相似文献   

20.
Nearly every cell type in the mammalian body projects from its cell surface a primary cilium that provides important sensory and signaling functions. Defects in the formation or function of primary cilia have been implicated in the pathogenesis of many human developmental disorders and diseases, collectively termed ciliopathies. Most neurons in the brain possess cilia that are enriched for signaling proteins such as G protein-coupled receptors and adenylyl cyclase type 3, suggesting neuronal cilia sense neuromodulators in the brain and contribute to non-synaptic signaling. Indeed, disruption of neuronal cilia or loss of neuronal ciliary signaling proteins is associated with obesity and learning and memory deficits. As the functions of primary cilia are defined by the signaling proteins that localize to the ciliary compartment, identifying the complement of signaling proteins in cilia can provide important insights into their physiological roles. Here we report for the first time that different GPCRs can colocalize within the same cilium. Specifically, we found the ciliary GPCRs, melanin-concentrating hormone receptor 1 (Mchr1) and somatostatin receptor 3 (Sstr3) colocalizing within cilia in multiple mouse brain regions. In addition, we have evidence suggesting Mchr1 and Sstr3 form heteromers. As GPCR heteromerization can affect ligand binding properties as well as downstream signaling, our findings add an additional layer of complexity to neuronal ciliary signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号