首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although dietary fat has been associated with inflammation and cardiovascular diseases (CVD), most studies have focused on individuals with preexisting diseases. However, the role of dietary fatty acids on inflammatory pathways before the onset of any abnormality may be more relevant for identifying initiating factors and interventions for CVD prevention. We fed young male pigs one of three diets differing in n-6 and n-3 polyunsaturated fatty acids (PUFA) linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (ALA, 18:3n-3) for 30 days. Cardiac membrane phospholipid fatty acids, phospholipase A(2) (PLA(2)) isoform activities, and cyclooxygenase (COX)-1 and -2 and 5-lipoxygenase (5-LO) expression were measured. The low PUFA diet (% energy, 1.2% LA+0.06% ALA) increased arachidonic acid (AA) and decreased eicosapentaenoic acid (EPA) in heart membranes and increased Ca(2+)-independent iPLA(2) activity, COX-2 expression, and activation of 5-LO. Increasing dietary ALA while keeping LA constant (1.4% LA+1.2% ALA) decreased the heart membrane AA, increased EPA, and prevented proinflammatory enzyme activation. However, regardless of high ALA, high dietary LA (11.6% LA and 1.2% ALA) decreased EPA and led to a high heart membrane AA, and Ca(2+)-dependent cPLA(2) with a marked increase in nitrosative stress. Our results suggest that the potential cardiovascular benefit of ALA is achieved only when dietary LA is reduced concomitantly rather than fed with high LA diet. The increased nitrosative stress in the unstressed heart with high dietary LA suggests that biomarkers of nitrosative stress may offer a useful early marker of the effects of dietary fat on oxidative tissue stress.  相似文献   

2.
3.
Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells   总被引:9,自引:0,他引:9  
The effects of linoleic acid (LA), alpha-linolenic acid (ALA), and docosahexaenoic acid (DHA) were compared to that of palmitic acid (PA), on inflammatory responses in human monocytic THP-1 cells. When cells were pre-incubated with fatty acids for 2-h and then stimulated with lipopolysaccharide for 24-h in the presence of fatty acids, secretion of interleukin (IL)-6, IL-1beta, and tumor necrosis factor-alpha (TNFalpha) was significantly decreased after treatment with LA, ALA, and DHA versus PA (P < 0.01 for all); ALA and DHA elicited more favorable effects. These effects were comparable to those for 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) and were dose-dependent. In addition, LA, ALA, and DHA decreased IL-6, IL-1beta, and TNFalpha gene expression (P < 0.05 for all) and nuclear factor (NF)-kappaB DNA-binding activity, whereas peroxisome proliferator-activated receptor-gamma (PPARgamma) DNA-binding activity was increased. The results indicate that the anti-inflammatory effects of polyunsaturated fatty acids may be, in part, due to the inhibition of NF-kappaB activation via activation of PPARgamma.  相似文献   

4.
Polyunsaturated fatty acids (PUFAs) have been shown to suppress the growth rate of human osteogenic sarcoma cells and to have selective cytotoxic activity against human cancer cells. The purpose of this study was to investigate the efficacy of various PUFAs on inhibition of prostaglandin (PG) synthesis by oral squamous carcinoma cells (SCC-25). A significant inhibition of PGE2 and PGF2 alpha synthesis in SCC-25 was observed by all PUFAs tested except in the case of linoleic acid (LA) at 10 microM level. At 10 microM level the rank order of inhibition of PG synthesis by PUFAs was docosahexaenoic (DHA) greater than eicosapentaenoic (EPA) + DHA greater than dihomogamma-linolenic (DGLA) greater than EPA greater than alpha-linolenic (ALA) greater than linoleic (LA). At 50, 75, 100 microM the rank order of inhibition was DGLA greater than EPA greater than EPA + DHA greater than DHA greater than ALA greater than LA.  相似文献   

5.
Omega-3 fatty acids and antioxidants in edible wild plants   总被引:2,自引:0,他引:2  
Human beings evolved on a diet that was balanced in the omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and was high in antioxidants. Edible wild plants provide alpha-linolenic acid (ALA) and higher amounts of vitamin E and vitamin C than cultivated plants. In addition to the antioxidant vitamins, edible wild plants are rich in phenols and other compounds that increase their antioxidant capacity. It is therefore important to systematically analyze the total antioxidant capacity of wild plants and promote their commercialization in both developed and developing countries. The diets of Western countries have contained increasingly larger amounts of linoleic acid (LA), which has been promoted for its cholesterol-lowering effect. It is now recognized that dietary LA favors oxidative modification of low density lipoprotein (LDL) cholesterol and increases platelet response to aggregation. In contrast, ALA intake is associated with inhibitory effects on the clotting activity of platelets, on their response to thrombin, and on the regulation of arachidonic acid (AA) metabolism. In clinical studies, ALA contributed to lowering of blood pressure, and a prospective epidemiological study showed that ALA is inversely related to the risk of coronary heart disease in men. Dietary amounts of LA as well as the ratio of LA to ALA appear to be important for the metabolism of ALA to longer-chain omega-3 PUFAs. Relatively large reserves of LA in body fat. as are found in vegans or in the diet of omnivores in Western societies, would tend to slow down the formation of long-chain omega-3 fatty acids from ALA. Therefore, the role of ALA in human nutrition becomes important in terms of long-term dietary intake. One advantage of the consumption of ALA over omega-3 fatty acids from fish is that the problem of insufficient vitamin E intake does not exist with high intake of ALA from plant sources.  相似文献   

6.
Some fatty acids are reported to inhibit tumor growth of pancreatic carcinoma. However, it is still unknown if alpha-linolenic acid (ALA) and linoleic acid (LA) inhibit liver metastasis of ductal pancreatic adenocarcinoma. Therefore we studied the effect of these fatty acids on liver metastasis in the animal model of N-nitrosobis(2-oxopropyl)amine (BOP)-induced pancreatic adenocarcinoma in Syrian hamsters. Since lipid peroxidation seems to be involved in carcinogenesis and metastasis, we further analyzed the intrahepatic concentration of thiobarbituric acid-reactive substances (TBARS) and activity of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD).We observed an increase in the incidence and the number of liver metastases in response to the combination of ALA and LA. This was accompanied by a decrease in hepatic GSH-Px activity and an increase in hepatic SOD activity and TBARS concentration. The increase in hepatic lipid peroxidation seems to be one possible mechanism of increasing liver metastasis in this study.  相似文献   

7.
Soybean lipoxygenase-mediated cooxidation of reduced glutathione (GSH) and concomitant superoxide generation was examined. The oxidation of GSH was dependent on the concentration of linoleic acid (LA), GSH, and the enzyme. The optimal conditions to observe maximal enzyme velocity included the presence of 0.42 mM LA, 2 mM GSH, and 50 pmole of enzyme/mL. The GSH oxidation was linear up to 10 minutes and exhibited a pH optimum of 9.0. The reaction displayed a Km of 1.49 mM for GSH and Vmax of 1.35 ± 0.02 μmoles/min/nmole of enzyme. Besides LA, arachidonic and γ-linolenic acids also supported the lipoxygenase-mediated GSH oxidation. Hydrogen peroxide and 13-hydroperoxylinoleic acid supported GSH cooxidation, but to a very limited extent. Oxidized glutathione (GSSG) was identified as the major product of the reaction based on the depletion of nicotinamide-adenine dinucleotide 3′-phosphate (NADPH) in the presence of glutathione reductase. The GSH oxidation was accompanied by the reduction of ferricytochrome c, which can be completely abolished by superoxide dismutase (SOD), suggesting the generation of superoxide anion radicals. Under optimal conditions, the rate of superoxide generation (measured as the SOD-inhibitable reduction of ferricytochrome c) was 10 ± 1.0 nmole/min/nmole of enzyme. These results clearly suggest that lipoxygenase is capable of oxidizing GSH to GSSG and simultaneously generating superoxide anion radicals, which may contribute to oxidative stress in cells under certain conditions.  相似文献   

8.
We investigated the effects of stearic acid (saturated), oleic acid (monounsaturated), linoleic acid (n-6 polyunsaturated), and alpha-linolenic acid (n-3 polyunsaturated) on lipid metabolism in a hepatocyte-derived cell line, HepG2. HepG2 cells were cultured in medium supplemented with either stearic acid (0.1% w/v), oleic acid (0.1% v/v), linoleic acid (0.1% v/v), or alpha-linolenic acid (0.1% v/v). After 24 h, expression of lipid metabolism-associated genes was evaluated by real-time PCR. Alpha-linolenic acid showed a suppressive effect on the hepatic fatty acid de novo synthesis and fatty acid oxidation pathways, while linoleic acid also showed a tendency to suppress these pathways although the effect was weaker. Moreover, alpha-linolenic acid enhanced the expression of enzymes associated with reactive oxygen species (ROS) elimination. In contrast, oleic acid tended to promote fatty acid synthesis and oxidation. In conclusion, alpha-linolenic acid and linoleic acid may be expected to ameliorate hepatic steatosis by downregulating fatty acid de novo synthesis and fatty acid oxidation, and by upregulating ROS elimination enzymes. Oleic acid had no distinct effects for improving steatosis or oxidative stress.  相似文献   

9.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

10.
Polyunsaturated fatty acids (PUFA) are essential for the development of the nervous system in animals. It is known that pigs are good models for human in many aspects. The aim of the study was to investigate how fat content and FA composition in sows' diet influence FA composition in brain of newborn and in liver and brain of one-day-old piglets, respectively. High fat (6 %) feeds were designed with regard to saturated or polyunsaturated fat content and n-6/n-3 ratio by adding either oats rich in linoleic acid (LA) or linseed oil rich in alpha-linolenic acid (ALA). The ratio n-6/n-3 PUFA was 11 in all three diets (the low fat (3 %), high fat saturated and high fat oats diet), while the ratio in the linseed oil diet was 2. Increased proportion of ALA in the diet increased ALA and eicosapentaenoic acid (EPA) in piglets' neutral and polar liver lipids and the long chain PUFA, EPA, docosapentaenoic and docosahexaenoic acid in piglet brain. The results suggest that transport of n-3 PUFA from sow to piglet was higher via milk than via bloodstream in the uterus and that increased content of ALA in sows' feed led to an increased accumulation of n-3 FA in piglets' liver and brain.  相似文献   

11.
Milk was collected from 36 Nepalese women, 15 to 32 years of age, in order to investigate relationships between the proportions of intermediate chain-length (C10-C14) fatty acids and critical n-3 and n-6 polyunsaturated fatty acids in the milk lipids they were producing. Serum was also obtained from these lactating women and the fatty acid composition of their serum phospholipid fraction was determined and compared with that of the corresponding milk lipid fraction. Compared to women in technologically advanced parts of the world, the serum phospholipids of the Nepalese women contained nutritionally adequate proportions of linoleic acid (LA) (16.8%), alpha-linolenic acid (ALA) (0.53%), arachidonic acid (AA) (5.69%), and docosahexaenoic acid (DHA) (1.42%). However, although the milk lipids contained adequate proportions of ALA (1.81%), AA (0.43%), and DHA (0.23%), the lipids contained low to moderate percentages of LA (mean, 9.05%). Positive correlations were observed between the proportions of AA (P=0.001, r=0.50) and ALA (P=0.03, r=0.36) in the serum phospholipids and milk lipids of the women. As the proportion of C10-Cl4 fatty acids in the milk lipids increased from 10% to 40%, there was preferential retention of three critical n-3 and n-6 fatty acids (ALA, AA, and DHA) at the expense of two relatively abundant nonessential fatty acids, namely stearic acid and oleic acid. In addition, using fatty acid melting point data and the mol fraction of the 9 most abundant fatty acids in the milk, we estimated the mean melting point (MMP) of the milk lipids of the Nepalese women. The MMPs ranged from 29.3 to 40.5 degrees C (median, 35.5 degrees C). These results indicate that: 1) the levels of AA and ALA in the blood of lactating mothers influence the levels of these fatty acids in the milk they produce; 2) when the mammary gland produces a milk that is rich in C10-Cl4 fatty acids, it somehow regulates triglyceride synthesis in such a way as to ensure that the milk will provide the exclusively breast-fed infant with the amounts of the critical n-3 and n-6 fatty acids it requires for normal growth and development; and 3) the melting point of the milk lipid fraction is determined mainly by the mol % of the intermediate chain-length (C10-C14) fatty acids, oleic acid, linoleic acid, and alpha-linolenic acid.  相似文献   

12.
High intakes of linoleic acid (LA,18:2n-6) have raised concern due to possible increase in arachidonic acid (ARA, 20:4n-6) synthesis, and inhibition of alpha linolenic acid (ALA, 18:3n-3) desaturation to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). In healthy men, 10.5% energy compared to 3.8% energy LA with 1% energy ALA increased plasma phospholipid LA and 20:2n-6, the elongation product of LA, and decreased EPA, with no change in ARA. However, LA was inversely related to ARA at both 10.5% energy and 3.8% energy LA, (r=?0.761, r=?0.817, p<0.001, respectively). A two-fold variability in ARA among individuals was not explained by the dietary LA, ARA, ALA, or fish intake. Our results confirm LA requirements for ARA synthesis is low, <3.8% energy, and they suggest current LA intakes saturate Δ-6 desaturation and adversely affect n-3 fatty acid metabolism. Factors other than n-6 fatty acid intake are important modifiers of plasma ARA.  相似文献   

13.
We hypothesised that the molecular changes triggered in type 2 diabetes might cause phenotypic changes in the lipid fraction of tissues. We compared tissue lipid profiles of inbred lean B6-Bom with those of the obese B6-ob/ob and diabetic BKS-db/db mice and found that genetically diabetic mice significantly accumulate fat (especially monounsaturated fatty acids, MUFA) in non-lipogenic tissues such as the eye (MUFA, 2-fold), skeletal muscle (MUFA, 13-fold) and pancreas (MUFA, 16-fold). In contrast, the B6-ob/ob mice which manifest a milder form of type 2 diabetes use the liver as their predominant lipid depot (MUFA 91-fold increase, as compared to lean mice values). The lipids in the BKS-db/db skeletal muscle and pancreas were also significantly enriched with linoleic acid (LA, (9-fold and 6-fold, respectively); and alpha-linolenic acid (ALA, 8.5-fold and 8-fold, respectively). MUFA, LA and ALA accumulation in the non-lipogenic tissues of BKS-db/db mice was associated with reduced liver stearoyl-CoA desaturase-1 expression.  相似文献   

14.
Nelson TL  Hickey MS 《Cytokine》2004,26(5):195-201
OBJECTIVE: To determine the effect of a short-term isocaloric exchange of alpha-linolenic acid (ALA, 18:3n3) for linoleic acid (LA, 18:2n6) on fasting levels of soluble interleukin-6 receptor (sIL6R), and soluble tumor necrosis factor-alpha receptors 1 and 2 (sTNFR1 and sTNFR2) in healthy normal weight and overweight/obese adult males. DESIGN: Four-day clinical intervention study with 0.5% or 5% of total energy from ALA. Fasting (10 h) blood samples were obtained on the morning of day 5 in both diet treatments to measure sTNFR1, sTNFR2, and sIL6R. SUBJECTS: Nine normal weight (BMI < 25 kg/m2) and seven overweight (BMI > or = 25 kg/m2) healthy males. RESULTS: Fasting sIL6R decreased significantly from the control (C) diet following four days on the high ALA isocaloric (ISO) diet in normal weight and overweight/obese subjects (normal weight: C = 34.89 +/- 3.17 ng/ml, ISO = 30.91 +/- 2.24 ng/ml, p < 0.05; overweight/obese: C = 38.19 +/- 3.92 ng/ml, ISO = 33.57 +/- 2.47 ng/ml, p , 0.05). The dietary intervention did not have a significant effect on fasting sTNFR1 or sTNFR2. CONCLUSIONS: The results suggest that an isocaloric exchange of ALA for LA can reduce fasting sIL6R concentration by approximately 11% after a four-day dietary intervention in both overweight/obese and normal weight subjects. The data also suggest that longer exposure to a similar diet may have the potential to reduce inflammatory burden and thus lower the risk of both cardiovascular disease as well as diabetes.  相似文献   

15.
Digesta samples from the ovine rumen and pure ruminal bacteria were incubated with linoleic acid (LA) in deuterium oxide-containing buffer to investigate the mechanisms of the formation of conjugated linoleic acids (CLAs). Rumenic acid (RA; cis-9,trans-11-18:2), trans-9,trans-11-18:2, and trans-10,cis-12-18:2 were the major CLA intermediates formed from LA in ruminal digesta, with traces of trans-9,cis-11-18:2, cis-9,cis-11-18:2, and cis-10,cis-12-18:2. Mass spectrometry indicated an increase in the n+1 isotopomers of RA and other 9,11-CLA isomers, as a result of labeling at C-13, whereas 10,12 isomers contained minimal enrichment. In pure culture, Butyrivibrio fibrisolvens and Clostridium proteoclasticum produced mostly RA with minor amounts of other 9,11 isomers, all labeled at C-13. Increasing the deuterium enrichment in water led to an isotope effect, whereby (1)H was incorporated in preference to (2)H. In contrast, the type strain and a ruminal isolate of Propionibacterium acnes produced trans-10,cis-12-18:2 and other 10,12 isomers that were minimally labeled. Incubations with ruminal digesta provided no support for ricinoleic acid (12-OH,cis-9-18:1) as an intermediate of RA synthesis. We conclude that geometric isomers of 10,12-CLA are synthesized by a mechanism that differs from the synthesis of 9,11 isomers, the latter possibly initiated by hydrogen abstraction on C-11 catalyzed by a radical intermediate enzyme.  相似文献   

16.
The aim of study was to investigate an influence of nutritional deficiency and dietary addition of vit. B(2), B(6) and folic acid on PUFAs content in rats' serum and liver. Limitation of consumption full value diet to 50% of its previously determined daily consumption, enriched with m/a vitamins, significant decreased of linoleic (LA) and alpha-linolenic (ALA) acids as well as distinctly increased arachidonic (AA) and docosahexaenoic (DHA) acids content in serum in 30th day. In 60th day lower content of AA and DHA fatty acids was found. Nutrition with such diet, lasting 90 days caused decrease of LA content and increase of AA. Diet limitation to its 30% of daily consumption decreased of eicosapentaenoic acid (EPA) and DHA in the 30th day, while AA and DHA content was increased in the 60th day. Distinct decrease of AA content and increase of EPA content were found in the 90th day of experiment. Use of diets, with limited consumption to 50% caused increase of LA and ALA acids content while AA and DHA acids content were significantly decreased in the liver, in 90th day. Limited consumption supplemented diet to 30% caused in liver significant decrease of LA and increase of EPA acids content.  相似文献   

17.
The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l−1) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1–1 mg l−1) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5–25 mg l−1) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l−1 ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2 •−) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect.  相似文献   

18.
Cadmium toxicity has been extensively studied in plants, however its biochemical mechanism of action has not yet been well established. To fulfil this objective, four-weeks-old soybean nodulated plants were treated with 200 μM Cd2+ for 48 h. δ-aminolevulinic acid dehydratase (ALA-D, E.C. 4.2.1.24) activity and protein expression, as well as δ-aminolevulinic acid (ALA) and porphobilinogen (PBG) concentrations were determined in nodules, roots and leaves. In vitro experiments carried out in leaves were performed using leaf discs to evaluate the oxidant and antioxidant properties of ALA and S-adenosyl-l-methinone (SAM), respectively. Oxidative stress parameters such as thiobarbituric acid reactive substances (TBARS) and GSH levels as well as superoxide dismutase (SOD, E.C. 1.15.1.1), and guaiacol peroxidase (GPOX, E.C. 1.11.1.7) were also determined. Cadmium treatment caused 100% inhibition of ALA-D activity in roots and leaves, and 72% inhibition in nodules whereas protein expression remained unaltered in the three studied tissues. Plants accumulated ALA in nodules (46%), roots (2.5-fold) and leaves (104%), respect to controls. From in vitro experiments using leaf discs, exposed to ALA or Cd2+, it was found that TBARS levels were enhanced, while GSH content and SOD and GPOX activities and expressions were diminished. The protective role of SAM against oxidative stress generated by Cd2+ and ALA was also demonstrated. Data presented in this paper let us to suggest that accumulation of ALA in nodules, roots and leaves of soybean plants due to treatment with Cd2+ is highly responsible for oxidative stress generation in these tissues.  相似文献   

19.
Delta-6-desaturase (D6D) activity is influenced by many nutritional and non-nutritional factors, among which one of the most important is aging. D6D activity could be susceptible to the dual influence of aging itself and of nutritional deficiencies, due to the reduced intake and/or absorption of essential nutrients. Particularly, vitamin B6 deficiency might be a crucial factor for D6D activity in aged people. Using 20 month old Sprague-Dawley rats fed a diet with a subnormal level of vitamin B6, we evaluated D6D activity for linoleic acid (LA) and alpha-linolenic acid (ALA) in liver microsomes, and the fatty acid composition of microsomal total lipids. We observed a diminished D6D activity for LA and also for ALA in vitamin B6-deficient animals, being approximately 63% and 81% respectively of the corresponding activity in control rats. As a consequence, significant modifications in the relative molar content of microsomal fatty acids were observed. The content of arachidonic and docosahexaenoic acid, the main products of the conversion of LA and ALA respectively, decreased, LA content increased and a decrease in the unsaturation index was observed in liver microsomes of B6-deficient rats. The foregoing results suggest that the impairment of D6D activity by vitamin B6 deficiency might be an important factor in decreasing the synthesis of n-6 and n-3 PUFAs. This may be particularly important in aging, where D6D activity is already impaired.  相似文献   

20.
Echium (Boraginaceae) species from the Macaronesian islands exhibit an unusually high level of gamma-linolenic acid (18:3n-6; GLA) and relatively low content of octadecatetraenoic acid (18:4n-3; OTA) in the seed, while the amounts of both fatty acids in their Continental (European) relatives are rather similar. We have tested the hypothesis of whether a different specificity of the acyl-Delta(6)-desaturases (D6DES) towards their respective usual substrates, linoleic acid (18:2n-6; LA) for GLA and alpha-linolenic acid (18:3n-3; ALA) for OTA, was partly responsible for this composition pattern. To this aim we have expressed in yeast the coding sequences of the D6DES genes for the Continental species Echium sabulicola, and the Macaronesian Echium gentianoides. When the yeast cultures are supplemented with the two fatty acid substrates (LA and ALA), a similar utilization of both compounds was found for the D6DES of E. sabulicola, while a preference for LA over ALA was observed for the enzyme of E. gentianoides. This substrate preference must contribute to the increased accumulation of GLA in the seeds of the Macaronesian Echium species. Comparison among the amino acid sequences of these desaturases and other related enzymes, allowed us the discussion about the possible involvement of some specific positions in the determination of substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号