首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
摘要: 籽粒多酚氧化酶(Polyphenol oxidase,PPO)活性是造成面粉以及面制品褐变的主要因素,了解不同小麦品种籽粒PPO活性基因的等位变异情况,有助于遗传改良中提高面制品的外观品质。本研究利用2A染色体上Ppo-A1的标记PPO18以及2D染色体上Ppo-D1的标记PPO16和PPO29检测该基因在118份黄淮麦区小麦品种中的等位变异。结果表明:在Ppo-A1位点,48.3%的小麦品种含Ppo-A1a(高PPO活性)型等位基因,51.7%的小麦品种含Ppo-A1b(低PPO活性)型等位基因,Ppo-A1a和Ppo-A1b两者之间的差异达到显著水平(P﹤0.05)。在Ppo-D1位点,55.1%的小麦品种含Ppo-D1a(低PPO活性)型等位基因,44.9%的小麦品种含Ppo-D1b(高PPO活性)型等位基因,Ppo-D1a和Ppo-D1b两者之间的差异也达到显著水平(P﹤0.05)。在Ppo-A1和Ppo-D1两个位点共检测到Ppo-A1a/Ppo-D1a(中间型PPO活性)、Ppo-A1a/Ppo-D1b(高PPO活性)、Ppo-A1b/Ppo-D1a(低PPO活性)、Ppo-A1b/Ppo-D1b(中间型PPO活性)四种变异组合类型,分布频率分别为28.8%、19.5%、26.3%和25.4%,彼此之间的差异均达到显著水平(P﹤0.05)。总体来看,这三个基因特异性标记可以快速、准确和方便的检测籽粒PPO基因的不同等位变异。此外,本研究检测出部分材料具有低PPO活性,可为选育具有低PPO活性的小麦品种提供有用信息。  相似文献   

2.
小麦育种中有效地选配亲本,并对面粉色泽品质进行改良,本文以261个小麦品种(系)组成原始群体,利用其多态性分子标记信息构建了包括100个品种(系)的拟核心种质,并对拟核心种质群体进行了群体遗传结构分析,对属于3个亚群的100个品种(系)的PPO基因的等位变异进行了检测,分析发现100个小麦品种(系)中Ppo-A1a 、Ppo-A1b、Ppo-D1a 和Ppo-D1b 的基因频率分别为43%、57%、72%、28% ,为小麦PPO活性的分子标记辅助选择(MAS)提供了基础资料。  相似文献   

3.
黑龙江小麦春化和光周期主要基因组成分析   总被引:1,自引:0,他引:1  
选取黑龙江省小麦品种126份,对其春化和光周期基因型及农艺性状进行研究。结果表明,春化和光周期基因位点显性等位变异组合在黑龙江省小麦中分布频率明显不同。含有显性基因组合Vrn-A1/Vrn-D1的分布频率最高,为26.2%,其次是显性基因Vrn-A1/Vrn-B1和Vrn-A1/Vrn-B1/Vrn-D1,分布频率分别为23.8%和23.0%,最低的是Vrn-B1基因,分布频率为0.8%,Vrn-B3位点在黑龙江小麦中不存在显性等位变异。光周期基因Ppd-D1位点的检测结果表明,53个小麦品种携带有Ppd-D1a基因型,表明光钝型小麦占42%,73个品种携带Ppd-D1b基因型,表明光敏型小麦占58%。结合田间性状调查分析春化和光周期基因对农艺性状的影响,发现在黑龙江省小麦品种中,光周期基因型对小麦的抽穗期有影响,Ppd-D1a的抽穗期比Ppd-D1b的抽穗期提前1~5d;春化和光周期基因等位变异组合对苗期习性有影响。  相似文献   

4.
Tamyb10-1基因属于MYB家族的一种转录因子,决定着小麦种皮的颜色,同时对穗发芽抗性也具有一定影响。本研究以来自我国黄淮麦区的地方小麦品种为材料,利用功能标记对参试小麦品种Tamyb10-1基因位点在3A、3B和3D染色体上的等位变异类型进行了检测。结果表明,参试材料中上述每一位点均有2种等位变异类型,由此形成了7种基因型组合,分别为Tamyb10-A1a/Tamyb10-B1a/Tamyb10-D1a、Tamyb10-A1a/Tamyb10-B1a/Tamyb10-D1b、Tamyb10-A1a/Tamyb10-B1b/Tamyb10-D1a、Tamyb10-A1b/Tamyb10-B1a/Tamyb10-D1a、Tamyb10-A1b/Tamyb10-B1b/Tamyb10-D1a、Tamyb10-A1b/Tamyb10-B1a/Tamyb10-D1b和Tamyb10-A1b/Tamyb10-B1b/Tamyb10-D1b,其分布频率分别为38.0%、15.0%、1.0%、8.0%、1.0%、33.0%和4.0%。进一步研究结果表明,种皮颜色为白色时,Tamyb10-1基因在3个位点均为野生型,而当任何一个位点发生突变时均表现为红色。由于该基因也影响穗发芽的抗性,且子粒颜色与其抗氧化能力密切相关,因此本研究对以子粒颜色性状为育种目标的优异种质资源筛选具有一定参考价值。  相似文献   

5.
为了解中国不同麦区小麦种质资源抗穗发芽基因的等位变异与分布特征,利用小麦抗穗发芽相关的Vp1B3和Dorm-1标记对7个不同麦区的446份小麦种质资源的等位变异和分布差异进行了检测。结果表明:(1)利用标记Vp1B3检测出Vp1的等位基因共有3种类型,分别为Vp1Bc(与抗穗发芽相关)、Vp1Ba(与感穗发芽相关)、Vp1Bb(与抗穗发芽相关),其频率分别为62.8%、32.9%和4.3%。(2)标记Dorm-1在供试材料中共检测出2种特异性条带,分别为468bp(DormB1a,与感穗发芽相关)和606bp(DormB1b,与抗穗发芽相关),所占比例分别为98.6%和1.4%。(3)具有DormB1b基因型的种质主要分布在黄淮冬麦区和长江中下游冬麦区,比例分别为5.1%和1.9%;具有(Vp1Bc+Vp1Bb)基因型(组合)的种质在长江中下游冬麦区和西南冬麦区分布最多,比例分别为75.0%和74.1%。(4)通过标记Vp1B3和Dorm-1的综合鉴定,共筛选出同时携带Vp1与Dorm-B1位点种质6份,分别是‘陕麦611’、‘郑农19’、‘豫49-198’、‘信阳0913’、‘咸阳大穗’与‘徐州8066’,可以作为抗穗发芽育种的参考亲本。  相似文献   

6.
采用非变性聚丙烯酰胺凝胶电泳,对90份小麦品种的淀粉分支酶同工酶(SBE)进行检测,以分析不同基因型对支链淀粉含量的遗传效应.结果表明:(1)SBEⅠ型显现出较为丰富的变异,具有A、B、Dⅰ和Dⅱ4个等位基因位点;SBEⅡ型仅具有SBEⅡa单一等位基因位点.根据SBEⅠ型4个基因位点在不同品种中的分布,可将90个品种分为7种基因型.不同基因型对支链淀粉含量的遗传效应分析表明,含有A位点的基因型(ADⅰDⅱ和ADⅰB)所对应的支链淀粉含量较高,且与由1个基因位点组成的基因型(Dⅰ)和2个基因位点组成的基因型(DⅰB和DⅰDⅱ)的支链淀粉含量差异显著.  相似文献   

7.
为了了解河南省最新培育小麦品种春化基因的等位变异状况,本研究利用分子标记技术对河南省新培育的50份冬小麦新品系(种)的春化基因Vrn-A1、Vrn-B1、Vrn-D1和Vrn-B3位点的等位变异组成进行了鉴定和分析。结果表明,所有参试小麦品种的Vrn-B3位点基因型均表现为隐性,48份小麦品种的Vrn-A1和Vrn-B1位点基因为隐性,42份小麦品种的Vrn-D1位点基因为隐性,说明隐性基因在河南小麦中占据主导地位。其中,豫农2019、豫农2020、豫农2071、国麦301、平安08-8、百农69、囤麦3698、08漯33共8个小麦品种的Vrn-D1位点基因均为显性的Vrn-D1a类型。小麦品系豫农2053和豫农3052的Vrn-A1和Vrn-B1位点的春化基因均表现为缺失,进一步研究表明,这2份小麦新品系仍能正常开花,但开花期比对照周麦18分别晚1d和2d,因此Vrn-A1和Vrn-B1并非小麦开花的必需基因。本研究将为黄淮麦区广适、高产小麦新品种的选育和推广提供参考。  相似文献   

8.
为发掘小麦小穗粒数相关基因位点,以384个重要小麦品种(系)组成的自然群体为材料,利用3个环境获得的表型和55K SNP芯片分型数据进行全基因组关联分析。结果发现,142个SNP和小穗粒数显著关联,解释的表型变异范围为3.27%~6.09%。有8个SNP在2或3个环境下与小穗粒数显著关联,其中AX-109986855、AX-109875224和AX-109843323位于2D染色体523.12~526.25 Mb区段,AX-111054388和AX-110671159在2B染色体上物理距离仅0.62 Mb。这8个SNP位点中,每个SNP的2个等位变异在3个环境的小穗粒数均达到显著水平(P<0.01),例如,2D染色体上AX-109843323位点G/G等位变异在3个环境的平均小穗粒数分别比C/C等位变异增加0.32、0.37和0.39粒。8个SNP位点的优异等位变异在供试材料的分布比例为5.20%~76.80%,其中7个优异等位变异的分布频率低于45.00%。进一步分析小穗粒数优异等位变异对穗粒数的影响,发现8个SNP位点具有优异等位变异的材料穗粒数(48.45~53.61粒)明...  相似文献   

9.
籽粒硬度和高分子量谷蛋白亚基(HMW-GS)对小麦品质起决定作用,为发掘和利用硬度Puroindoline基因和HMW-GS优异等位变异,提升长江中下游麦区中强筋小麦品质,对长江中下游麦区推广品种以及其他麦区优质推广品种和地方品种共计94份材料进行分子检测和品质分析。结果表明,硬度变幅7.21~72.91,软质类型42份、占44.68%,硬质类型42份、占44.68%,混合类型10份、占10.64%。硬度突变基因型共有5种,包括Pina-D1b/Pinb-D1a、Pina-D1r/Pinb-D1a、Pina-D1s/Pinb-D1a、Pina-D1a/Pinb-D1b和Pina-D1a/Pinb-D1p,数量分别为8份、3份、1份、29份和9份,籽粒硬度表现依次为Pina-D1r/Pinb-D1a>Pina-D1s/Pinb-D1a>Pina-D1b/Pinb-D1a>Pina-D1a/Pinb-D1p>Pina-D1a/Pinb-D1b。HMW-GS分析表明,Glu-A1位点1和Null亚基材料比例分别为53.33%和45.56%,此外有1G330E亚基材料1...  相似文献   

10.
杨松杰  梁强 《西北植物学报》2013,33(8):1565-1573
采用SDS-PAGE凝胶电泳和STS标记方法分别对陕南鄂西丘陵麦区小麦品种(系)中的高分子量谷蛋白亚基(HMW-GS)组成和低分子量谷蛋白亚基(LMW-GS)Glu-A3与Glu-B3位点的等位基因进行了检测,并通过STS特异性标记对SDS-PAGE凝胶电泳检测的HMW-GS部分结果进行了验证。结果表明:(1)陕南麦区64份小麦材料中共检测到9种HMW-GS类型,其中Glu-A1位点含有Null、1共2种等位变异,频率分别为53.12%和46.88%;Glu-B1位点有7+8、7+9、14+15和17+18共4个等位变异,频率分别为26.56%、48.44%、21.88%和3.13%;Glu-D1位点有2+12、5+10和4+12共3种等位变异,频率为71.88%、15.63%和12.49%;而且17种不同亚基组合中以"1,7+9,2+12"与"Null,7+9,2+12"为主。(2)64份小麦材料中检测到11种LMW-GS类型,其中Glu-A3位点存在Glu-A3a、Glu-A3c和Glu-A3d共3种等位变异,分布频率为10.94%、62.50%和26.56%;GluB3位点有Glu-B3a、Glu-B3b、Glu-B3d、Glu-B3e、Glu-B3f、Glu-B3g、Glu-B3i和Glu-B3j共8种等位变异,分布频率分别为6.25%、4.69%、29.69%、1.56%、3.13%、18.75%、4.69%、31.25%。(3)2个特异性STS标记对SDSPAGE凝胶电泳检测到的HMW-GS部分组成结果验证表明,STS标记可以有效克服SDS-PAGE方法检测小麦HMW-GS中的7与7*、8与8*以及2与2*亚基的误读问题,为小麦品质育种与食品加工提供理论支持。  相似文献   

11.
Polyphenol oxidase (PPO) enzymatic activity is a major cause in time-dependent discoloration in wheat dough products. The PPO-A1 and PPO-D1 genes have been shown to contribute to wheat kernel PPO activity. Recently a novel PPO gene family consisting of the PPO-A2, PPO-B2, and PPO-D2 genes has been identified and shown to be expressed in wheat kernels. In this study, the sequences of these five kernel PPO genes were determined for the spring wheat cultivars Louise and Penawawa. The two cultivars were found to be polymorphic at each of the PPO loci. Three novel alleles were isolated from Louise. The Louise X Penawawa mapping population was used to genetically map all five PPO genes. All map to the long arm of homeologous group 2 chromosomes. PPO-A2 was found to be located 8.9 cM proximal to PPO-A1 on the long arm of chromosome 2A. Similarly, PPO-D1 and PPO-D2 were separated by 10.7 cM on the long arm of chromosome 2D. PPO-B2 mapped to the long arm of chromosome 2B and was the site of a novel QTL for polyphenol oxidase activity. Five other PPO QTL were identified in this study. One QTL corresponds to the previously described PPO-D1 locus, one QTL corresponds to the PPO-D2 locus, whereas the remaining three are located on chromosome 2B.  相似文献   

12.
Polyphenol oxidase (PPO) plays a crucial role in browning reactions in fresh and processed fruits and vegetables, as well as products made from cereal grains. Common wheat (Triticum aestivum L.) has a large genome, representing an interesting system to advance our understanding of plant PPO gene expression, regulation and function. In the present study, we characterized the expression of Ppo-A1, a major PPO gene located on wheat chromosome 2A, using DNA sequencing, semi-quantitative RT-PCR, PPO activity assays and whole-grain staining methods during grain development. The results indicated that the expression of the Ppo-A1b allele was regulated by alternative splicing of pre-mRNAs, resulting from a 191-bp insertion in intron 1 and one C/G SNP in exon 2. Eight mRNA isoforms were identified in developing grains based on alignments between cDNA and genomic DNA sequences. Only the constitutively spliced isoform b encodes a putative full-length PPO protein based on its coding sequence whereas the other seven spliced isoforms, a, c, d, e, f, g and h, have premature termination codons resulting in potential nonsense-mediated mRNA decay. The differences in expression of Ppo-A1a and Ppo-A1b were confirmed by PPO activity assays and whole grain staining, providing direct evidence for the influence of alternative splicing in the coding region of Ppo-A1 on polyphenol oxidase activity in common wheat grains.  相似文献   

13.
In winter wheat (Triticum aestivum L.), the stem begins to elongate after the vernalization requirement is satisfied during winter and when favorable temperature and photoperiod conditions are attained in spring. In this study, we precisely measured elongation of the first extended internode on 96 recombinant inbred lines of a population that was generated from a cross between two winter wheat cultivars, Jagger (early stem elongation) and 2174 (late stem elongation). We mapped a major locus for stem elongation to the region where VRN-A1 resides in chromosome 5A. Visible assessment of winter dormancy release was concomitantly associated with this locus. VRN1 was previously cloned based on variation in vernalization requirement between spring wheat carrying a dominant Vrn-1 allele and winter wheat carrying a recessive vrn-1 allele. Both of two winter wheat cultivars in this study carry a recessive vrn-A1 allele; therefore, our results suggest that either VRN-A1 might invoke a new regulatory mechanism or a new gene residing close to VRN-A1 plays a regulatory role in winter wheat development. Phenotypic expression of the vrn-A1a allele of Jagger was more sensitive to the year of measurement of stem elongation than that of the vrn-A1b allele of 2174. In addition to QSte.osu.5A, several loci were also found to have minor effects on initial stem elongation of winter wheat. Seventeen of nineteen locally adapted cultivars in the southern Great Plaints contained the vrn-A1b allele. Hence, breeders in this area have inadvertently selected this allele, contributing to later stem elongation and more conducive developmental patterns for grain production.  相似文献   

14.
Four isoforms of polyphenol oxidase (PPO) were demonstrated in the aerial roots of a tropical orchid, Aranda `Christine 130'. They were extracted at neutral pH and purified to homogeneity as judged by SDS-gel electrophoresis. Purification was achieved by a combination of Triton X-114 treatment, temperature phase partitioning, gel filtration chromatography, ion-exchange separation and chromatofocusing. Two of the isoforms, designated PPOa and PPOd, differed in their N-terminal sequence, tryptic peptide map and substrate affinity for (+)-catechin, but exhibited similarity in their molecular mass under denaturing conditions, pH optimum and kinetic behaviour toward 4-methyl catechol. The other two isoforms, PPOb and PPOc, were identical to PPOa and PPOd, respectively, in terms of their N-terminal sequence, substrate preference and pH maximum, but were different with regard to their molecular mass under denaturing conditions. These four isoforms differed in their isoelectric point.  相似文献   

15.
Summary The accessibility of pyridoxal 5′-phosphates of the phosphorylaseab hybrid to resolution by imidazole citrate and cysteine was studied and compared with that of theb anda forms. Promotion of resolution of phosphorylated forms by raising the temperature or in the presence of glycogen indicates that the resistance of phosphorylasea andab to resolution at 0°C is due rather to their tetrameric state than their phosphorylation-related active conformation. The pattern of resolution of theab hybrid was similar to that of thea and differed from that of theb forms in that it occurred at 30°C and 37°C but not at 0°C, moreover, it did not show first-order kinetics. On the other hand, inhibition of resolution by ligands binding to the nucleotide site of phosphorylase reflected an intermediate sensitivity of theab form between that of theb anda forms. We conclude that partial phosphorylation of phosphorylaseb elicits conformational change(s) in both subunits which influence the monomer-monomer interactions and resolution of pyridoxal 5′-phosphates. Resistance ofab hybrid to monomerizing agents as imidazole citrate, comparable to that of other forms, argues for its stability, ruling out its reshuffling into mixtures of phosphorylaseb anda.  相似文献   

16.
The allelic diversity of high-moleculat-weght glutenin subunits (HMWGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism polymorphism information content (PIC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.  相似文献   

17.
Cloned B-cell lines from a female T16H/XSxr mouse in which Tdy expression was suppressed due to X inactivation and from a male X/XSxr mouse, both of the (kxb)F1 haplotype, were examined for H-Y expression. This was determined both by their ability to act as targets for H-2k and H-2b-restricted H-Y-specific cytotoxic T cells and by their ability to stimulate the proliferation of H-2Kk, H-2Db (class I) and Ab (class II)-restricted T-cell clones. In B-cell clones from the T16H/XSxr mouse, expression of H-Y/Db exhibited partial X inactivation and only a proportion ( 30%) of the cells were targets for or stimulated H-2Db-restricted H-Y-specific T cells. In contrast, H-Y eiptopes restricted by H-2k (H-Y/Kk, H-Y/Dk) and Ab (H-Y/Ab) exhibited no X inactivation. Furthermore, no inactivation of H-Y/Db, H-Y/Ab, or H-Yk was observed in the male X/XSxr mouse. These results indicate that the T16H/XSxr female is a mosaic, as a result of the variable spread of X inactivation into the Sxr region. They further suggest that the H-Y antigen recognized in association with H-2k and H-2Db class I molecules and Ab class II molecules may be the product of more than one gene.  相似文献   

18.
Mouse strain and tissue distribution analyses indicate that the new antiserum A anti-A-Tla b recognizes the cell-surface product governed by the previously serologically undetectable Qa-I b allele. This cell-surface product has therefore been called Qa-1.2. Three levels of anti-Qa-1.2 cytotoxicity in the presence of complement have been observed: high, intermediate, and zero lysis. In general, high levels of lysis correlate with the presence of the Qa-1 b allele, while zero levels of lysis correlate with the presence of the Qa-1 aallele. The A.CA strain reacts with both anti-Qa-1.1 and anti-Qa-1.2 and may possess a third allele, Qa-1 d. Several strains including B6-H-2 k react in an intermediate fashion. Recombinant strain analyses indicate that this intermediate reaction may be due to modifying genes within the H-2D region.  相似文献   

19.
Osaki  M.  Shinano  T.  Kaneda  T.  Yamada  S.  Nakamura  T. 《Photosynthetica》2001,39(2):205-213
Ontogenetic changes of rates of photon-saturated photosynthesis (P sat) and dark respiration (R D) of individual leaves were examined in relation to nitrogen content (Nc) in rice, winter wheat, maize, soybean, field bean, tomato, potato, and beet. P sat was positively correlated with Nc as follows: P sat = CfNc + P sat0, where Cf and P sat0 are coefficients. The value of Cf was high in maize, medium in rice and soybean, and low in field bean, potato, tomato, and beet, of which difference was not explained by ribulose-1,5-bisphoshate carboxylase/oxygenase (RuBPCO) content. R D was explained by P sat and/or Nc, however, two models must be applied according to plant species. R D related linearly with P sat and Nc in maize, field bean, and potato as follows: R D = a P sat + b, or R D = aNc + b, where a, a, b and b are coefficients. In other species, the R D/P sat ratio increased exponentially with the decrease of Nc as follows: R D/P sat = a exp(b Nc), where a and b are coefficients. Therefore, R D in these crops was expressed as follows: In(R D) = ln(a P sat) + b Nc, indicating that R D in these crops was regulated by both P sat and Nc.  相似文献   

20.
Puroindolines, the tryptophan-rich proteins controlling grain hardness in wheat, appeared as two pairs of 13 kDa polypeptides in the Acid-PAGE (A-PAGE) and two-dimensional A-PAGE×SDS-PAGE patterns of starch-granule proteins from wild allotetraploid wheat Aegilops ventricosa Tausch. (2n = 4x = 28, genomes DvDvNvNv). Puroindoline pair a1 + a2 reacted strongly with an antiserum specific for puroindoline-a from common wheat (Triticum aestivum L.), whereas puroindoline pair b1 + b2 exhibited A-PAGE relative mobilities similar to that of puroindoline-b in Aegilops tauschii (Coss.), the D-genome donor to both common wheat and Ae. ventricosa. Puroindolines a2 and b1 were found to be encoded by alleles Pina-D1a and Pinb-D1h on chromosome 5Dv, respectively, whereas puroindolines a1 and b2 were assumed to be under the genetic control of chromosome 5Nv. Puroindoline a1 encoded by the novel Pina-N1a allele exhibited a high level of amino acid variation with respect to puroindoline-a. On the other hand, the tryptophan-rich region of puroindoline b2 encoded by allele Pinb-N1a showed a sequence change from lysine-42 to arginine, with no effect on the amount of protein b2 accumulated on the starch granules. A partial duplication of the pin-B gene (Pinb-relic) was identified about 1100 bp downstream from Pinb-D1 on chromosome 5Dv. The present findings are the first evidence of a tetraploid wheat species in which four puroindoline genes are expressed. The potential of Ae. ventricosa as a source of genes that may be used to modulate endosperm texture and other valuable traits in cultivated wheat species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号