首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
DNA damaging agents typically induce an apoptotic cascade in which p53 plays a central role. However, absence of a p53-mediated response does not necessarily abrogate programmed cell death, due to the existence of p53-independent apoptotic pathways, such as those mediated by the pro-apoptotic molecule ceramide. We compared ceramide levels before and after DNA damage in human osteosarcoma (U2OS) and colon cancer (HCT116) cells that were either expressing or deficient in p53. When treated with mitomycin C, p53-deficient cells, but not p53-expressing cells, showed a marked increase in ceramide levels. Microarray analysis of genes involved in ceramide metabolism identified acid ceramidase (ASAH1, up-regulated), ceramide glucosyltransferase (UGCG, down-regulated), and galactosylceramidase (GALC, up-regulated) as the three genes most affected. Experiments employing pharmacological and siRNA agents revealed that inhibition of UGCG is sufficient to increase ceramide levels and induce cell death. When inhibition of UGCG and treatment with mitomycin C were combined, p53-deficient, but not p53-expressing cells, showed a significant increase in cell death, suggesting that the regulation of sphingolipid metabolism could be used to sensitize cells to chemotherapeutic drugs.  相似文献   

4.
Complex dietary sphingolipids such as sphingomyelin and glycosphingolipids have been reported to inhibit development of colon cancer. This protective role may be the result of turnover to bioactive metabolites including sphingoid bases (sphingosine and sphinganine) and ceramide, which inhibit proliferation and stimulate apoptosis. The purpose of the present study was to investigate the effects of sphingoid bases and ceramides on the growth, death, and cell cycle of HT-29 and HCT-116 human colon cancer cells. The importance of the 4,5-trans double bond present in both sphingosine and C(2)-ceramide (a short chain analog of ceramide) was evaluated by comparing the effects of these lipids with those of sphinganine and C(2)-dihydroceramide (a short chain analog of dihydroceramide), which lack this structural feature. Sphingosine, sphinganine, and C(2)-ceramide inhibited growth and caused death of colon cancer cells in time- and concentration-dependent manners, whereas C(2)-dihydroceramide had no effect. These findings suggest that the 4,5-trans double bond is necessary for the inhibitory effects of C(2)-ceramide, but not for sphingoid bases. Evaluation of cellular morphology via fluorescence microscopy and quantitation of fragmented low-molecular weight DNA using the diphenylamine assay demonstrated that sphingoid bases and C(2)-ceramide cause chromatin and nuclear condensation as well as fragmentation of DNA, suggesting these lipids kill colon cancer cells by inducing apoptosis. Flow cytometric analyses confirmed that sphingoid bases and C(2)-ceramide increased the number of cells in the A(0) peak indicative of apoptosis and demonstrated that sphingoid bases arrest the cell cycle at G(2)/M phase and cause accumulation in the S phase. These findings establish that sphingoid bases and ceramide induce apoptosis in colon cancer cells and implicate them as potential mediators of the protective role of more complex dietary sphingolipids in colon carcinogenesis.  相似文献   

5.
The tumour suppressor gene p53 and the intracellular signalling molecule ceramide have both been shown to play crucial roles in the induction of apoptosis by ionising radiation. In this study we examined whether p53 and ceramide are involved in independent signal pathways, inducing different types of apoptosis. TK6 (p53wt/wt) and WTK1 (p53mut/mut) lymphoblastoid cells were treated with ionising radiation or N-acetyl-d-sphingosine (C2-ceramide). Flow cytometry and fluorescence microscopy studies were performed to characterise the time kinetics and morphological features of induced apoptosis. Ceramide- and radiation-induced apoptotic cells display characteristic differences in morphology and DNA staining and ceramide-induced apoptosis is expressed much faster than radiation-induced apoptosis. Radiation-induced apoptosis is p53-dependent and ceramide-induced apoptosis is p53-independent. The p53 pathway and the ceramide pathway are two independent signal pathways leading to distinct types of apoptosis. Since p53 is very often dysfunctional in tumour cells, modifying the ceramide pathway is a promising strategy to increase tumour sensitivity to radiation and other anticancer agents. Received: 19 April 2001 / Accepted: 15 October 2001  相似文献   

6.
7.
Keratinocytes contain abundant ceramides compared to other cells. However, studies on these cells have mainly focused on the barrier function of ceramide, while their other roles, such as those in apoptosis or cell cycle arrest, have not been well addressed. In this study, we investigated the apoptosis-inducing effect of exogenously added cell-permeable ceramides in HaCaT keratinocytes. We found that N-hexanoyl sphingosine (C6-ceramide) induced apoptosis efficiently through the accumulation of long chain ceramides. On the other hand, N-acetyl sphingosine (C2-ceramide) induced neither apoptosis nor accumulation of long chain ceramides. We also found that exogenously added C6-ceramide was hydrolyzed to sphingosine and then reacylated in long chain ceramides (ceramide recycling pathway), but that C2-ceramide was not hydrolyzed and thus not recycled. We propose that this is the basis for the chain length-specific heterogeneity observed in ceramide-induced apoptosis in these cells. These results also imply that keratinocytes utilize exogenous sphingolipids or ceramides to coordinate their own ceramide compositions.  相似文献   

8.
Ceramide, the basic structural unit of sphingolipids, controls the balance between cell growth and death by inducing apoptosis. We have previously shown that accumulation of ceramide, triggered by hydrogen peroxide (H(2)O(2)) or by short-chain ceramide analogs, induces apoptosis of lung epithelial cells. Here we elucidate the link between caspase-3 activation, at the execution phase, and ceramide accumulation, at the commitment phase of apoptosis in A549 human lung adenocarcinoma cells. The induction of ceramide accumulation by various triggers of ceramide generation, such as H(2)O(2), C(6)-ceramide, or UDP-glucose-ceramide glucosyltransferase inhibitor dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, triggered the activation of caspase-3. This ceramide elevation also induced the cleavage of the death substrate poly(ADP-ribose) polymerase and was followed by apoptotic cell death. Ceramide-mediated apoptosis was blocked by a general caspase inhibitor, Boc-d-fluoromethylketone, and by overexpression of the antiapoptotic protein Bcl-2. Notably, overexpression of Bcl-2 reduced the basal cellular levels of ceramide and prevented the induction of ceramide generation by C(6)-ceramide, which implies ceramide generation as a possible target for the antiapoptotic effects of Bcl-2.  相似文献   

9.
p53 and regulation of bioactive sphingolipids   总被引:1,自引:0,他引:1  
Both the sphingolipid and p53 pathways are important regulators- and apparent collaborators-of cell-fate decisions. Whereas some investigations have suggested that ceramide and more complex sphingolipids function upstream of p53 or in a p53-independent manner, other studies propose that p53-dependent alterations in these sphingolipids can also contribute to apoptosis. Further studies focusing on sphingolipid metabolizing enzymes have revealed that they function similarly both upstream and downstream of p53 activation. However, whereas various components of the sphingolipid and p53 pathways may simultaneously function to elicit apoptosis and/or growth inhibition, SMase and SK1 may undergo explicit regulation by p53 that could contribute to ceramide-induced senescence in cells. Thus, we propose that regulation of bioactive sphingolipid signaling molecules could be of therapeutic benefit in the treatment of p53-dependent cancers.  相似文献   

10.
Although the p53 tumor-suppressor gene product plays a critical role in apoptotic cell death induced by DNA-damaging chemotherapeutic agents, human glioma cells with functional p53 were more resistant to gamma-radiation than those with mutant p53. U-87 MG cells with wild-type p53 were resistant to gamma-radiation. U87-W E6 cells that lost functional p53, by the expression of type 16 human papillomavirus E6 oncoprotein, became susceptible to radiation-induced apoptosis. The formation of ceramide by acid sphingomyelinase (A-SMase), but not by neutral sphingomyelinase, was associated with p53-independent apoptosis. SR33557 (2-isopropyl-1-(4-[3-N-methyl-N-(3,4-dimethoxybphenethyl)amino]propyloxy)benzene-sulfonyl) indolizine, an inhibitor of A-SMase, suppressed radiation-induced apoptotic cell death. In contrast, radiation-induced A-SMase activation was blocked in glioma cells with endogenous functional p53. The expression of acid ceramidase was induced by gamma-radiation, and was more evident in cells with functional p53. N-oleoylethanolamine, which is known to inhibit ceramidase activity, unexpectedly downregulated acid ceramidase and accelerated radiation-induced apoptosis in U87-W E6 cells. Moreover, cells with functional p53 could be sensitized to gamma-radiation by N-oleoylethanolamine, which suppressed radiation-induced acid ceramidase expression and then enhanced ceramide formation. Sensitization to gamma-radiation was also observed in U87-MG cells depleted of functional p53 by retroviral expression of small interfering RNA. These results indicate that ceramide may function as a mediator of p53-independent apoptosis in human glioma cells in response to gamma-radiation, and suggest that p53-dependent expression of acid ceramidase and blockage of A-SMase activation play pivotal roles in protection from gamma-radiation of cells with endogenous functional p53.  相似文献   

11.
Treatment of A549 cells with C(6)-ceramide resulted in a significant increase in the endogenous long chain ceramide levels, which was inhibited by fumonisin B1 (FB1), and not by myriocin (MYR). The biochemical mechanisms of generation of endogenous ceramide were investigated using A549 cells treated with selectively labeled C(6)-ceramides, [sphingosine-3-(3)H]d-erythro-, and N-[N-hexanoyl-1-(14)C]d-erythro-C(6)-ceramide. The results demonstrated that (3)H label was incorporated into newly synthesized long chain ceramides, which was inhibited by FB1 and not by MYR. Interestingly, the (14)C label was not incorporated into long chain ceramides. Taken together, these results show that generation of endogenous ceramide in response to C(6)-ceramide is due to recycling of the sphingosine backbone of C(6)-ceramide via deacylation/reacylation and not due to the elongation of its fatty acid moiety. Moreover, the generation of endogenous long chain ceramide in response to C(6)-ceramide was completely blocked by brefeldin A, which causes Golgi disassembly, suggesting a role for the Golgi in the metabolism of ceramide. In addition, the generation of endogenous ceramide in response to short chain exogenous ceramide was induced by d-erythro- but not l-erythro-C(6)-ceramide, demonstrating the stereospecificity of this process. Interestingly, several key downstream biological activities of ceramide, such as growth inhibition, cell cycle arrest, and modulation of telomerase activity were induced by d-erythro-C(6)-ceramide, and not l-erythro-C(6)-ceramide (and inhibited by FB1) in A549 cells, suggesting a role for endogenous long chain ceramide in the regulation of these responses.  相似文献   

12.
Ceramide is a sphingolipid metabolite that induces cancer cell death. When C6-ceramide is encapsulated in a nanoliposome bilayer formulation, cell death is selectively induced in tumor models. However, the mechanism underlying this selectivity is unknown. As most tumors exhibit a preferential switch to glycolysis, as described in the “Warburg effect”, we hypothesize that ceramide nanoliposomes selectively target this glycolytic pathway in cancer. We utilize chronic lymphocytic leukemia (CLL) as a cancer model, which has an increased dependency on glycolysis. In CLL cells, we demonstrate that C6-ceramide nanoliposomes, but not control nanoliposomes, induce caspase 3/7-independent necrotic cell death. Nanoliposomal ceramide inhibits both the RNA and protein expression of GAPDH, an enzyme in the glycolytic pathway, which is overexpressed in CLL. To confirm that ceramide targets GAPDH, we demonstrate that downregulation of GAPDH potentiates the decrease in ATP after ceramide treatment and exogenous pyruvate treatment as well as GAPDH overexpression partially rescues ceramide-induced necrosis. Finally, an in vivo murine model of CLL shows that nanoliposomal C6-ceramide treatment elicits tumor regression, concomitant with GAPDH downregulation. We conclude that selective inhibition of the glycolytic pathway in CLL cells with nanoliposomal C6-ceramide could potentially be an effective therapy for leukemia by targeting the Warburg effect.  相似文献   

13.
Dunkern T  Roos W  Kaina B 《Mutation research》2003,544(2-3):167-172
Agents inducing O(6)-methylguanine (O(6)MeG) in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), are not only highly mutagenic and carcinogenic but also cytotoxic because of the induction of apoptosis. In CHO fibroblasts, apoptosis triggered by O(6)MeG requires cell proliferation and MutSalpha-dependent mismatch repair and is related to the induction of DNA double-strand breaks (DSBs). Furthermore, it is mediated by Bcl-2 degradation and does not require p53 for which the cells were mutated [Cancer Res. 60 (2000) 5815]. Here we studied cytotoxicity and apoptosis induced by MNNG in a pair of human lymphoblastoid cells expressing wild-type p53 (TK6) and mutant p53 (WTK1) and show that TK6 cells are more sensitive than WTK1 cells to cell killing (determined by a metabolic assay) and apoptosis. Apoptosis was a late response observed <24h after treatment and was related to accumulation of p53 and upregulation of Fas/CD95/Apo-1 receptor as well as Bax. The data indicate that MNNG induces apoptosis in lymphoblastoid cells by activating the p53-dependent Fas receptor-driven pathway. This is in contrast to CHO fibroblasts in which, in response to O(6)MeG, the mitochondrial damage pathway becomes activated.  相似文献   

14.
This study was designed to analyze whether ceramide, a bioeffector of growth suppression, plays a role in the regulation of telomerase activity in A549 cells. Telomerase activity was inhibited significantly by exogenous C(6)-ceramide, but not by the biologically inactive analog dihydro-C(6)-ceramide, in a time- and dose-dependent manner, with 85% inhibition produced by 20 microm C(6)-ceramide at 24 h. Moreover, analysis of phosphatidylserine translocation from the inner to the outer plasma membrane by flow cytometry and of poly(ADP-ribose) polymerase degradation by Western blotting showed that ceramide treatment (20 microm for 24 h) had no apoptotic effects. Trypan blue exclusion, [(3)H]thymidine incorporation, and cell cycle analyses, coupled with clonogenic cell survival assay on soft agar, showed that ceramide treatment with a 20 microm concentration at 24 h resulted in the cell cycle arrest of the majority of the cell population at G(0)/G(1) with no detectable cell death. These results suggest that the inhibition of telomerase by ceramide is not a consequence of cell death but is correlated with growth arrest. Next, to determine the role of endogenous ceramide in telomerase modulation, A549 cells were transiently transfected with an expression vector containing the full-length bacterial sphingomyelinase cDNA (b-SMase). The overexpression of b-SMase, but not exogenously applied purified b-SMase enzyme, resulted in significantly decreased telomerase activity compared with controls, showing that the increased endogenous ceramide is sufficient for telomerase inhibition. Moreover, treatment of A549 cells with daunorubicin at 1 microm for 6 h resulted in the inhibition of telomerase, which correlated with the elevation of endogenous ceramide levels and growth arrest. Finally, stable overexpression of human glucosylceramide synthase, which attenuates ceramide levels by converting ceramide to glucosylceramide, prevented the inhibitory effects of C(6)-ceramide and daunorubicin on telomerase. Therefore, these results provide novel data showing for the first time that ceramide is a candidate upstream regulator of telomerase.  相似文献   

15.
16.
Tumour necrosis factor (TNF)-alpha induces a transient increase in N-octanoylsphingosine (C8-ceramide) which has been postulated as an intracellular mediator in TNF-alpha signalling. We tested the ability of C8-ceramide to reproduce the TNF-alpha-mediated interference with endothelial cell proliferation and DNA synthesis. TNF-alpha (10 ng.mL-1) and C8-ceramide (20 microM) inhibited the incorporation of [3H]thymidine into DNA and led to an accumulation of cells in the G1 phase of the cell cycle. When the responses of the tumour suppressors p53 and RB were analysed, it was found that TNF-alpha and C8-ceramide induced increased expression of p53. Treatment with TNF-alpha or C8-ceramide lead to a significant decrease in total retinoblastoma protein (RB) content that correlated with high levels of p53. These results suggest that p53 and RB may complement each other in their contribution to cell cycle arrest. TNF-alpha prevented RB phosphorylation whereas C8-ceramide did not interfere with this process, suggesting that it follows a ceramide-independent pathway.  相似文献   

17.
In lymphocytes, Fas activation leads to both apoptosis and necrosis, whereby the latter form of cell death is linked to delayed production of endogenous ceramide and is mimicked by exogenous administration of long- and short-chain ceramides. Here molecular events associated with noncanonical necrotic cell death downstream of ceramide were investigated in A20 B lymphoma and Jurkat T cells. Cell-permeable, C6-ceramide (C6), but not dihydro-C6-ceramide (DH-C6), induced necrosis in a time- and dose-dependent fashion. Rapid formation of reactive oxygen species (ROS) within 30 min of C6 addition detected by a dihydrorhodamine fluorescence assay, as well as by electron spin resonance, was accompanied by loss of mitochondrial membrane potential. The presence of N-acetylcysteine or ROS scavengers like Tiron, but not Trolox, attenuated ceramide-induced necrosis. Alternatively, adenovirus-mediated expression of catalase in A20 cells also attenuated cell necrosis but not apoptosis. Necrotic cell death observed following C6 exposure was associated with a pronounced decrease in ATP levels and Tiron significantly delayed ATP depletion in both A20 and Jurkat cells. Thus, apoptotic and necrotic death induced by ceramide in lymphocytes occurs via distinct mechanisms. Furthermore, ceramide-induced necrotic cell death is linked here to loss of mitochondrial membrane potential, production of ROS, and intracellular ATP depletion.  相似文献   

18.
It is generally accepted that exposure of cells to a variety of DNA-damaging agents leads to up-regulation and activation of wild-type (wt) p53 protein. We investigated the (re)-activation of p53 protein in two human cancer cell lines in which the gene for this tumor suppressor is not mutated: HeLaS(3) cervix carcinoma and MCF-7 breast cancer cells, by induction via different genotoxic and cytotoxic stimuli. Treatment of human cells with the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or different anti-cancer drugs resulted in a strong DNA damage as evidenced by Comet assay and a marked increase in site-specific phosphorylation of H2AX. Unlike in MCF-7 cells, in HeLaS(3) cells the expression of p53 protein did not increase after MNNG treatment despite a strong DNA damage. However, other agents for example doxorubicin markedly induced p53 response in HeLaS(3) cells. After exposure of these cells to MNNG, the ATM-dependent effector proteins Chk2 and NBS1 were phosphorylated, thereby evidencing that MNNG-induced DNA breakage was recognized and properly signaled. In HeLaS(3) cells wt p53 protein is not functional due to E6-mediated targeting for accelerated ubiquitylation and degradation. Therefore, the activation of a p53 response to genotoxic stress in HeLaS(3) cells seems to depend on the status of E6 oncoprotein. Indeed, the induction of p53 protein in HeLaS(3) cells in response to distinct agents inversely correlates with the cellular level of E6 oncoprotein. This implicates that the capability of different agents to activate p53 in HeLaS(3) cells primarily depends on their inhibitory effect on expression of E6 oncoprotein.  相似文献   

19.
Ceramides, which are membrane sphingolipids and key mediators of cell-stress responses, are generated by a family of (dihydro) ceramide synthases (Lass1-6/CerS1-6). Here, we report that brain development features significant increases in sphingomyelin, sphingosine, and most ceramide species. In contrast, C(16:0)-ceramide was gradually reduced and CerS6 was down-regulated in mitochondria, thereby implicating CerS6 as a primary ceramide synthase generating C(16:0)-ceramide. Investigations into the role of CerS6 in mitochondria revealed that ceramide synthase down-regulation is associated with dramatically decreased mitochondrial Ca(2+)-loading capacity, which could be rescued by addition of ceramide. Selective CerS6 complexing with the inner membrane component of the mitochondrial permeability transition pore was detected by immunoprecipitation. This suggests that CerS6-generated ceramide could prevent mitochondrial permeability transition pore opening, leading to increased Ca(2+) accumulation in the mitochondrial matrix. We examined the effect of high CerS6 expression on cell survival in primary oligodendrocyte (OL) precursor cells, which undergo apoptotic cell death during early postnatal brain development. Exposure of OLs to glutamate resulted in apoptosis that was prevented by inhibitors of de novo ceramide biosynthesis, myriocin and fumonisin B1. Knockdown of CerS6 with siRNA reduced glutamate-triggered OL apoptosis, whereas knockdown of CerS5 had no effect: the pro-apoptotic role of CerS6 was not stimulus-specific. Knockdown of CerS6 with siRNA improved cell survival in response to nerve growth factor-induced OL apoptosis. Also, blocking mitochondrial Ca(2+) uptake or decreasing Ca(2+)-dependent protease calpain activity with specific inhibitors prevented OL apoptosis. Finally, knocking down CerS6 decreased calpain activation. Thus, our data suggest a novel role for CerS6 in the regulation of both mitochondrial Ca(2+) homeostasis and calpain, which appears to be important in OL apoptosis during brain development.  相似文献   

20.
Ceramide synthases (CerS1–CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号