首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A major issue in the use of mammalian cell culture in biopharmaceutical manufacturing is the removal of process related impurities, such as residual host cell DNA, during the product purification process. To ensure that sufficient DNA removal is achieved during purification, it is essential to have an accurate and sensitive assay for host cell DNA. The quantitative polymerase chain reaction (QPCR) is widely used for this purpose; however, the extent to which the choice of QPCR gene target can have an impact on final results requires further understanding. In the present study, we examined the relationship between the genomic copy number of eight different Chinese Hamster ovary (CHO) gene targets and the sensitivity and accuracy afforded by those targets in a residual host cell DNA QPCR assay. We also evaluated the use of each gene target for accurate measurement of residual DNA clearance using in-process purification samples from two CHO production cell lines. Our results revealed a correlation between gene target abundance and the potential sensitivity for use in a QPCR assay. However, we found that higher copy number gene targets do not provide the highest measurement or reveal the largest clearance of residual host cell DNA from purification samples. These findings suggest that different DNA sequences may clear or degrade at differential rates and highlight unexpected considerations that must be made in the choice of QPCR gene target when designing QPCR assays.  相似文献   

2.
The FI gene product (gp) of bacteriophage lambda is required during phage head assembly in vivo. Mutations in this gene lead to an accumulation of immature concatemeric lambda DNA and of proheads that appear normal and are competent for DNA packaging in vitro. This phenotype can be taken as evidence of a failure to couple DNA and proheads for packaging/maturation. In contrast to the requirement for gpFI in vivo, the packaging of lambda DNA in vitro occurs efficiently in the complete absence of gpFI. However, if ssDNA is included at the outset of the in vitro packaging reaction, DNA packaging is blocked. This block to packaging is relieved by addition of gpFI. Thus packaging of lambda DNA in vitro can be made dependent of gpFI by the inclusion of ssDNA at the outset of the reaction. Inhibition of DNA packaging by ssDNA appears to be mediated by a lambda b region-directed protein (packaging inhibitor, ben protein) that is present in the crude extracts of cells used to support the early steps of the packaging reaction. Neither ssDNA nor the packaging inhibitor alone has significant inhibitory effect on packaging; both components are required together to effect the inhibition that is relieved by gpFI. The packaging inhibitor was extensively purified and shown to have endonucleolytic activity. Several lines of evidence are presented to support the idea that both the inhibitory and endonucleolytic activities are functions of the same protein. Although gpFI relieves the inhibition imposed by the ben protein in packaging, gpFI fails to block the DNA cleavage activity of the ben protein in the standard endonuclease assay.  相似文献   

3.
One of the final steps in the morphogenetic pathway of phage λ is the packaging of a single genome into a preformed empty head structure. In addition to the terminase enzyme, the packaging chaperone, FI protein (gpFI), is required for efficient DNA packaging. In this study, we demonstrate an interaction between gpFI and the major head protein, gpE. Amino acid substitutions in gpFI that reduced the strength of this interaction also decreased the biological activity of gpFI, implying that this head binding activity is essential for the function of gpFI. We also show that gpFI is a two-domain protein, and the C-terminal domain is responsible for the head binding activity. Using nuclear magnetic resonance spectroscopy, we determined the three-dimensional structure of the C-terminal domain and characterized the helical nature of the N-terminal domain. Through structural comparisons, we were able to identify two previously unannotated prophage-encoded proteins with tertiary structures similar to gpFI, although they lack significant pairwise sequence identity. Sequence analysis of these diverse homologues led us to identify related proteins in a variety of myo- and siphophages, revealing that gpFI function has a more highly conserved role in phage morphogenesis than was previously appreciated. Finally, we present a novel model for the mechanism of gpFI chaperone activity in the DNA packaging reaction of phage λ.  相似文献   

4.
Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process‐related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ‐650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6–8), conductivity (2–15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a “size exclusion qPCR assay.” Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141–149, 2018  相似文献   

5.
Lambda DNA packaging in vitro can be examined in stages. In a first step, lambda DNA interacts with terminase to form a DNA-enzyme complex, called complex I. Upon addition of proheads, in a second step, a ternary complex, complex II, containing DNA, terminase and the prohead is formed. Finally, upon addition of the rest of the morphogenetic components, complete phages are assembled. We have investigated the effect of the FI gene product (gpFI) in these reactions and found that a stimulation in phage yield is observed when gpFI is included early in the reaction, at the time when DNA, terminase and proheads interact to form complex II. Measurements of complex II formation revealed that gpFI stimulated the rate of formation of this intermediate. gpFI was further shown to stimulate the addition of proheads to preformed complexes I to give complex II, but the protein did not stimulate complex I formation.  相似文献   

6.
Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation.  相似文献   

7.
Programmed cell death constitutes a common fundamental incident occurring during oogenesis in a variety of different organisms. In Drosophila melanogaster, it plays a significant role in the maturation process of the egg chamber. In the present study, we have used an in vitro development system for studying the effects of inducers and inhibitors of programmed cell death during the late stages of oogenesis. Treatment of the developing egg chambers with two widely used inducers of cell death, etoposide and staurosporine, blocks further development and induces chromatin condensation but not DNA fragmentation in nurse and follicle cells, as revealed by propidium iodide staining and terminal transferase-mediated dUTP nick-end labeling assay. Moreover, incubation of the developing egg chambers with the caspase-3 inhibitor Z-DEVD-FMK significantly delays development, prevents DNA fragmentation, but does not affect chromatin condensation. The above results demonstrate, for the first time, that chromatin condensation in Drosophila ovarian nurse and follicle cells is a caspase-3-like independent process and is regulated independently from DNA fragmentation.  相似文献   

8.
The development of bacteriophage lambda and double-stranded DNA viruses in general involves the convergence of two separate pathways: DNA replication and head assembly. Clearly, packaging will proceed only if an empty capsid shell, the prohead, is present to receive the DNA, but genetic evidence suggests that proheads play another role in the packaging process. For example, lambda phages with an amber mutation in any head gene or in FI, the gene encoding the accessory packaging protein gpFI, are able to produce normal amounts of DNA concatemers but they are not cut, or matured, into unit length chromosomes for packaging. Similar observations have been made for herpes simplex 1 virus. In the case of lambda, a negative model proposes that in the amber phages, unassembled capsid components are inhibitory to maturation, and a positive model suggests that assembled proheads are required for cutting. We tested the negative model by using a deletion mutant devoid of all prohead genes and FI in an in vivo cos cleavage assay; in this deleted phage, the cohesive ends were not cut. When lambda proheads and gpFI were provided in vivo via a second prophage, cutting was restored, and gpFI was required, results that support the positive model. Phage 21 is a sister phage of lambda, and although its capsid proteins share approximately 60% residue identity with lambda's, phage 21 proheads did not restore cutting, even when provided with the accessory protein gpFI. Models for the role of proheads and gpFI in cos cutting are discussed.  相似文献   

9.
The fatty acid composition of the membrane of the conditional auxotroph fabB2 can be altered by allowing the cells to grow at non-permissive temperature (37°C) in the presence of a cis-unsaturated fatty acid. The phage 9NA, a virulent phage ofSalmonella typhimurium, can not multiply in fabB2. Synthesis and maturation of the phage DNA are differentially affected by variation in the fatty acid composition of the cell membrane. The replicating DNA associates with the membrane complex, the site of DNA synthesis. The association is comparatively weak in oleic, claidic, palmitoleic, palmitelaidic and linolelaidic acid enriched cells. When the cells are grown in the presence of palmitoleic acid, a large pool of concatemeric phage DNA accumulates in the cytoplasm within 10 min of infection. The conversion of concatemeric DNA to monomeric one i.e., mature phage length DNA, is inhibited in such cells. The presence of concatemeric DNA can be visualized by electron microscope. Such a situation is not observed when the cells are grown in media supplemented with other types of unsaturated fatty acids. The mechanism by which the host cell membrane lipid controls phage development is yet to be worked out.  相似文献   

10.
Carcinogenic nickel compounds are known to induce promutagenic DNA lesions such as DNA strand breaks and DNA adducts in cultured mammalian cells. In standard mutation assays, in contrast, they were found to be either inactive or weakly active. In our in vitro mutation studies in a lacI transgenic embryonic fibroblast cell line, nickel subsulfide (Ni3S2) increased mutation frequency up to 4.5-fold. We subsequently applied the comet assay and transgenic rodent mutation assays to investigate the DNA damaging effect and mutagenic potential of nickel subsulfide in target cells of carcinogenesis. A 2-h in vitro treatment of freshly isolated mouse nasal mucosa and lung cells with nickel subsulfide clearly induced DNA fragmentation in a concentration dependent manner. The strong effect was not seen in the same cell types following inhalative treatment of mice and rats, leading only in the mouse nasal mucosa to high DNA damage. When the same inhalative treatment was applied to lacZ and lacI transgenic mice and rats, the spontaneous mutation frequency of these target genes in the respiratory tissues was not increased. These results support a recently proposed non-genotoxic model of nickel carcinogenesis, which acts through gene silencing via DNA methylation and chromatin condensation. This model may also explain our in vitro mutation data in the lacI transgenic cell line, in which nickel subsulfide increased mutation frequency, but in about one-third of the mutants, molecular analysis did not reveal any DNA sequence change in the coding region of the lacI gene despite of the phenotypic loss of its function.  相似文献   

11.
12.
We demonstrated the time-course of DNA replication of the 330-kbp Chlorella virus PBCV-1 by pulsed-field gel electrophoresis. Viral DNA replication began between 90 and 120 min postinfeclion in cell samples produced without first removing cell walls. The host nuclear genome was degraded beginning almost immediately after infection, but some host DNA remained even after 360 min postinfection. The karyotype of the host alga consisted of nine resolvable bands that we presume to represent 13 chromosomes based on band intensity. The chromosomes ranged in size from 1.1 to 6.5 megabase pairs (Mbp). A summation of the sizes of the bands predicts a genome size of 39–45 Mbp of DNA.  相似文献   

13.
Resveratrol is an important phytoalexin notable for a wide variety of beneficial activities. Resveratrol has been reported to be active against various pathogenic bacteria. However, it is not clear at the molecular level how this important activity is manifested. Resveratrol has been reported to bind to cupric ions and reduce it. In the process, it generates copper-peroxide complex and reactive oxygen species (ROS). Due to this ability, resveratrol has been shown to cleave plasmid DNA in several studies. To this end, we envisaged DNA damage to play a role in resveratrol mediated inhibition in Escherichia coli. We employed DNA damage repair deficient mutants from keio collection to demonstrate the hypersensitive phenotype upon resveratrol treatment. Analysis of integrity and PCR efficiency of plasmid DNA from resveratrol-treated cells revealed significant DNA damage after 6?h or more compared to DNA from vehicle-treated cells. RAPD-PCR was performed to demonstrate the damage in genomic DNA from resveratrol-treated cells. In addition, in situ DNA damage was observed under fluorescence microscopy after resveratrol treatment. Further resveratrol treatment resulted in cell cycle arrest of significant fraction of population revealed by flow cytometry. However, a robust induction was not observed in phage induction assay and induction of DNA damage response genes quantified by promoter fused fluorescent tracker protein. These observations along with our previous observation that resveratrol induces membrane damage in E. coli at early time point reveal, DNA damage is a late event, occurring after a few hours of treatment.  相似文献   

14.
DNA condensation plays a key role in non-viral gene delivery by affecting gene transfection, nuclear targeting, and eventual gene expression efficiency. Theoretically, a DNA condenser with the appropriate DNA condensation ability but without affecting DNA dissociation from DNA condensates inside the cytoplasm should be a perfect carrier for gene delivery. Protamine is a natural DNA condensation agent and has been widely used in gene delivery. In this work, protamine was selectively digested enzymatically to produce low molecular weight protamine fragments (LMWPs) of various lengths and amino acid compositions. The DNA condensation ability and gene transfection efficiency of these LMWP peptides were tested. Compared to protamine, all the LMWP peptides showed lower DNA binding strength. However, some LMWP peptides demonstrated excellent DNA condensation ability and could form very compact DNA condensates with small particle size (∼100 nm). More interestingly, LMWP peptide-mediated in vitro gene delivery showed prolonged (up to 12 days) gene expression. Results from this study suggest that designing DNA condensers with appropriate and tunable DNA binding strengths and condensation abilities would be an effective means to improve gene expression and thus gene therapy efficiency. Since LMWP peptides have low immunogenicity, they would be safer than protamine for use in gene therapies. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 10, pp 1447–1455.  相似文献   

15.
16.
《Autophagy》2013,9(3):298-302
Autophagy is a physiological and evolutionarily conserved process maintaining homeostatic functions, such as protein degradation and organelle turnover. Accumulating data provide evidence that autophagy also contributes to cell death under certain circumstances, but how this is achieved is not well known. Herein, we report that autophagy occurs during developmentally-induced cell death in the female germline, observed in the germarium and during middle developmental stages of oogenesis in Drosophila melanogaster. Degenerating germline cells exhibit caspase activation, chromatin condensation, DNA fragmentation and punctate staining of mCherry-DrAtg8a, a novel marker for monitoring autophagy in Drosophila. Genetic inhibition of autophagy, by removing atg1 or atg7 function, results in significant reduction of DNA fragmentation, suggesting that autophagy acts genetically upstream of DNA fragmentation in this tissue. This study provides new insights into the mechanisms that regulate cell death in vivo during development.  相似文献   

17.
The cytological sequence of senescence-related changes in coleoptiles of rice (Oryza sativa L. cv. Nippon-bare) was studied using fluorescence and electron microscopy. The coleoptiles reach full size 3 d after sowing, then rapidly senesce and wither completely by day 7. The interveinal region in cross-sections taken 1 mm from the tip of the coleoptile was selected for this analysis. Fluorescence microscopy using samples embedded in Technovit 7100 resin, electron microscopy and immunoelectron microscopy using DNA-specific antibodies were used to elucidate the sequence of senescence-related events. These occur in the following order: (i) degradation of the chloroplast DNA (cpDNA); (ii) condensation of the nucleus in conjunction with a decrease in the size of the dense-chromatin region, shrinkage of the chloroplast, degradation of ribulose-1, 5-bisphosphate carboxylase/oxygenase, dilation of the thylakoid membranes, increase in size and number of osmiophilic globules, condensation of the cytoplasm; (iii) disorganization of the nucleus, degeneration of the tonoplast; (iv) complete loss of the cytoplasmic components, distortion of the cell wall, invasion of microorganisms into the intercellular spaces and ultimately into the cell itself. The mitochondria maintain their ultrastructural integrity and a constant level of mitochondrial DNA throughout senescence. In young mesophyll cells, invagination of the tonoplast into the vacuole frequently occurs. This occasionally includes cytoplasmic material, which is digested in the vacuole as senescence proceeds. Immunoelectron microscopy suggests that cpDNA degradation involves rough digestion first, rather than rapid, direct decomposition of the DNA into nucleotides. The fragmented cpDNA is then dispersed throughout the chloroplast and cytoplasm. Received: 9 April 1998 / Accepted: 11 June 1998  相似文献   

18.
19.
20.
DNA vaccines and gene medicines, derived from bacterial plasmids, are emerging as an important new class of pharmaceuticals. However, the challenges of performing cell lysis processes for plasmid DNA purification at an industrial scale are well known. To address downstream purification challenges, we have developed autolytic Escherichia coli host strains that express endolysin (phage λR) in the cytoplasm. Expression of the endolysin is induced during fermentation by a heat inducible promoter. The endolysin remains in the cytoplasm, where it is separated from its peptidoglycan substrate in the cell wall; hence the cells remain alive and intact and can be harvested by the usual methods. The plasmid DNA is then recovered by autolytic extraction under slightly acidic, low salt buffer conditions and treatment with a low concentration of non‐ionic detergent. Under these conditions the E. coli genomic DNA remains associated with the insoluble cell debris and is removed by a solid–liquid separation. Here, we report fermentation, lysis methods, and plasmid purification using autolytic hosts. Biotechnol. Bioeng. 2009; 104: 505–515 © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号