首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of T-2, HT-2, 3'-OH T-2, 3'-OH HT-2, T-2 triol, and T-2 tetraol toxins which inhibited [3H]thymidine uptake in mitogen-stimulated human peripheral lymphocytes by 50% were 1.5, 3.5, 4.0, 50, 150, and 150 ng/ml, respectively. The results suggested that the initial hydrolysis of T-2 toxin and the hydroxylation of T-2 toxin to 3'-OH T-2 toxin did not significantly decrease the immunotoxicity of the parent molecule, whereas further hydrolysis to T-2 triol and T-2 tetraol toxins or hydroxylation to 3'-OH HT-2 toxin decreased in vitro toxicity for human lymphocytes.  相似文献   

2.
A method for the detection of T-2 metabolites was developed and applied to analysis of metabolites in excreta of broiler chickens administered 3H-labeled T-2 toxin. The method used acetonitrile extraction and partitioning with petroleum ether followed by chromatography on Amberlite XAD-2, Florisil, and Sep-Pak C18. The recovery of T-2 toxin added to the chicken excreta was 73% at a concentration of 0.2 microgram/g. About 80% of orally administered 3H-labeled T-2 toxin was rapidly metabolized to more polar derivatives and eliminated in the excreta within 48 h. T-2 toxin, HT-2 toxin, neosolaniol, and T-2 tetraol were detected at 0.06 to 1.13% of the total dose, 48 h after administration. Eight unknown derivatives, named TB-1 to TB-8, were quantitatively more significant than the metabolites above. TB-3 and TB-9 represented about 12 and 25% of the total dose, respectively. One of the metabolites (TB-6), 1.5% of the total dose, was identified as 4-deacetylneosolaniol (15-acetyl-3 alpha, 4 beta, 8 alpha-trihydroxy-12, 13-epoxytrichothec-9-ene).  相似文献   

3.
125I-Transferrin binding to lymphoblastoid K562 and Daudi cells markedly increased after exposure of the cells to culture conditions that stimulated proliferation. Treatment of these cells with interferon-alpha (IFN-alpha) resulted in concurrent inhibition of cell growth and of the rise in transferrin binding. Scatchard analyses revealed that IFN reduced the number of transferrin receptors without altering the binding constant. When 125I-transferrin binding was measured using permeabilized cells, the IFN-induced reduction of binding was comparable to that observed with intact cells, indicating that IFN diminished the total number of cellular transferrin receptors. We also found that addition of IFN-alpha to phytohemagglutinin-stimulated human lymphocytes inhibited the mitogen-induced enhancement of [3H]thymidine incorporation as well as surface binding of 125I-transferrin. Our findings suggest that the decrease in transferrin receptor expression on IFN-alpha-treated cells may be one of the mechanisms responsible for the antiproliferative action of IFN.  相似文献   

4.
T-2 toxin is taken up by lymphocytes in 10–15 min in a saturable manner. Uptake is dependent on temperature and partially on the availability of energy. Approx. 105 molecules of T-2 toxin are bound per cell, having a mean affinity constant, Ka = 1.6·107 M?1. The toxin is rapidly dissociated from the cell to leave approx. 10–15% of the original loading in 1 h. It is concluded that T-2 toxin uptake and release do not follow conventional mechanisms.  相似文献   

5.
Gas chromatography-mass spectrometry was used to identify various T-2 toxin metabolites in chicken excreta and organs 18 h after intraperitoneal injection of the toxin. No trichothecenes were detected in the heart and kidneys, and only trace amounts were detected in the lungs. Most of the T-2 metabolites were found in the excreta, although considerable amounts were also found in the liver. In addition to the previously identified T-2 metabolites in chicken excreta (HT-2 toxin, 15 acetoxy T-2 tetraol, and T-2 tetraol), we found 3'-hydroxy HT-2 toxin (the major metabolite in excreta and organs), 3'-hydroxy T-2 toxin, 4-acetoxy T-2 tetraol, and trace amounts of 8-acetoxy T-2 tetraol, 3-acetoxy-3'hydroxy HT-2 toxin, and T-2 triol. Unmetabolized T-2 toxin and an unidentified isomer of T-2 tetraol monoacetate were also detected in the excreta. Most of the metabolites in the chicken are similar to those encountered in cultures of fungal species producing T-2 toxin. A comparison with T-2 toxin metabolism in the cow is also reported.  相似文献   

6.
The neutral red (NR) cell viability assay was used with various cell types of human origin to quantitate the potency of T-2 mycotoxin and its metabolites. The human melanoma SK-Mel/27 cell line was the most sensitive, with a midpoint cytotoxicity value of 2.8 ng of T-2 per ml. With the human hepatoma cell line, HepG2, the sequence of potency for a series of mycotoxins was T-2 greater than HT-2 greater than T-2 triol greater than T-2 tetraol.  相似文献   

7.
The fungus Fusarium sporotrichioides, capable of producing T-2 toxin (T-2), was grown on irradiated corn kernels remoistened to 22% and kept in atmospheres of different CO2-O2 combinations. The production of T-2 was totally inhibited under 60% CO2-20% O2, whereas only trace amounts were detected when the gas combination was 40% CO2-5% O2. Under all other combinations tested, the amount of T-2 produced was reduced by 25 to 50% as compared with the control. Fungal growth was not inhibited by any of the gas mixtures examined, and the growth rate (measured by direct plating, dilution method, and CO2 production) was almost identical to that in grains kept under air. It is concluded that although F. sporotrichioides is tolerant to high CO2 levels, T-2 formation on corn can be inhibited by CO2 concentrations less than that required to inhibit fungal growth.  相似文献   

8.
Gas chromatography-mass spectrometry was used to identify various T-2 toxin metabolites in chicken excreta and organs 18 h after intraperitoneal injection of the toxin. No trichothecenes were detected in the heart and kidneys, and only trace amounts were detected in the lungs. Most of the T-2 metabolites were found in the excreta, although considerable amounts were also found in the liver. In addition to the previously identified T-2 metabolites in chicken excreta (HT-2 toxin, 15 acetoxy T-2 tetraol, and T-2 tetraol), we found 3'-hydroxy HT-2 toxin (the major metabolite in excreta and organs), 3'-hydroxy T-2 toxin, 4-acetoxy T-2 tetraol, and trace amounts of 8-acetoxy T-2 tetraol, 3-acetoxy-3'hydroxy HT-2 toxin, and T-2 triol. Unmetabolized T-2 toxin and an unidentified isomer of T-2 tetraol monoacetate were also detected in the excreta. Most of the metabolites in the chicken are similar to those encountered in cultures of fungal species producing T-2 toxin. A comparison with T-2 toxin metabolism in the cow is also reported.  相似文献   

9.
Microbial acetyl conjugation of T-2 toxin and its derivatives.   总被引:2,自引:2,他引:0       下载免费PDF全文
The acetyl conjugation of T-2 toxin and its derivatives, the 12,13-epoxytrichothecene mycotoxins, was studied by using mycelia of trichothecene-producing strains of Fusarium graminearum, F. nivale, Calonectria nivalis, and F. sporotrichoides, T-2 toxin was efficiently converted into acetyl T-2 toxin by all strains except a T-2 toxin-producing strain of F. sporotrichoides, which hydrolyzed the substrate to HT-2-toxin and neosolaniol. HT-2 toxin was conjugated to 3-acetyl HT-2 toxin as an only product by mycelia of F. graminearum and C. nivalis, but was also resistant to conjugation by both F. nivale and F. sporotrichoides. Neosolaniol was also biotransformed selectively into 3-acetyl neosolaniol by F. graminearum. However, 3-acetyl HT-2 toxin was not acetylated by any of the strains under the conditions employed, but was hydrolyzed to HT-2 toxin by F. graminearum and F. nivale. This is the first report on the biological 3 alpha-O-acetyl conjugation of T-2 toxin and its derivatives.  相似文献   

10.
The neutral red (NR) cell viability assay was used with various cell types of human origin to quantitate the potency of T-2 mycotoxin and its metabolites. The human melanoma SK-Mel/27 cell line was the most sensitive, with a midpoint cytotoxicity value of 2.8 ng of T-2 per ml. With the human hepatoma cell line, HepG2, the sequence of potency for a series of mycotoxins was T-2 greater than HT-2 greater than T-2 triol greater than T-2 tetraol.  相似文献   

11.
12.
3'-Hydroxy HT-2 toxin and T-2 tetraol, in vivo metabolites of T-2 toxin, were orally administered to Wistar rats, and four metabolites having a trichothec-9,12-diene nucleus, which were termed deepoxytrichothecenes, were newly found in the excreta. Their structures were confirmed as 3'-hydroxy-deepoxy HT-2, 3'-hydroxy-deepoxy T-2 triol, 15-acetyl-deepoxy T-2 tetraol, and deepoxy T-2 tetraol on the basis of mass and nuclear magnetic resonance spectroscopy. Resolution of T-2 metabolites and corresponding deepoxytrichothecenes by gas-liquid and thin-layer chromatography was also described.  相似文献   

13.
The fungus Fusarium sporotrichioides, capable of producing T-2 toxin (T-2), was grown on irradiated corn kernels remoistened to 22% and kept in atmospheres of different CO2-O2 combinations. The production of T-2 was totally inhibited under 60% CO2-20% O2, whereas only trace amounts were detected when the gas combination was 40% CO2-5% O2. Under all other combinations tested, the amount of T-2 produced was reduced by 25 to 50% as compared with the control. Fungal growth was not inhibited by any of the gas mixtures examined, and the growth rate (measured by direct plating, dilution method, and CO2 production) was almost identical to that in grains kept under air. It is concluded that although F. sporotrichioides is tolerant to high CO2 levels, T-2 formation on corn can be inhibited by CO2 concentrations less than that required to inhibit fungal growth.  相似文献   

14.
The effect of T-2 toxin on the growth rates of different bacteria was used as a measure of its toxicity. Toxin levels of 10 micrograms/ml did not decrease the growth rate of Selenomonas ruminantium and Anaerovibrio lipolytica, whereas the growth rate of Butyrivibrio fibrisolvens was uninhibited at toxin levels as high as 1 mg/ml. There was, however, a noticeable increase in the growth rate of B. fibrisolvens CE46 and CE51 and S. ruminantium in the presence of low concentrations (10 micrograms/ml) of T-2 toxin, which may indicate the assimilation of the toxin as an energy source by these bacteria. Three tributyrin-hydrolyzing bacterial isolates did not grow at all in the presence of T-2 toxin (10 micrograms/ml). The growth rate of a fourth tributyrin-hydrolyzing bacterial isolate was unaffected. B. fibrisolvens CE51 degraded T-2 toxin to HT-2 toxin (22%), T-2 triol (3%), and neosolaniol (10%), whereas A. lipolytica and S. ruminantium degraded the toxin to HT-2 toxin (22 and 18%, respectively) and T-2 triol (7 and 10%, respectively) only. These results have been explained in terms of the presence of two different toxin-hydrolyzing enzyme systems. Studies with B. fibrisolvens showed the presence of a T-2 toxin-degrading enzyme fraction in a bacterial membrane preparation. This fraction had an approximate molecular weight of 65,000 and showed esterase activity (395.6 mumol of p-nitrophenol formed per min per mg of protein with p-nitrophenylacetate as the substrate.  相似文献   

15.
The biodegradation of T-2 toxin was studied by strains of micromycetes which were isolated from the environment. The 26 tested strains were divided into three groups. Group contains strains which degraded T-2 toxin very fast. This toxin could not be chromatographically determined in the medium even after 48 hours of incubation and the antifungal activity of residua against Kluyveromyces fragilis CCY-51-1-2 was low or zero. There were strains of Alternaria sp., Ulocladium sp., Aspergillus candidus, Cladosporium cladosporioides, Rhodotorula sp., Aspergillus flavus and Cladosporium macrocarpum. Group II contains with a low activity and in group III the results were variable and non stable.  相似文献   

16.
Hybrids resulting from crosses between Baccharis sarothroides and B. pilularis (FS1), B. sarothroides (FS2) and B. megapotamica (FS3) were tested for their tolerance to trichothecenes as well as their ability to metabolize the toxins. B. sarothroides (desert broom) was placed in an aqueous solution containing 500 ppm of T-2 toxin and showed visible signs of toxicity on the twigs at 21 h after exposure but not at 6 h, indicating some resistance. Samples of the twigs harvested 6 and 21 h after treatment contained, respectively, T-2 (0.03 and 2.2 micrograms/g), HT-2 (0.09 and 7.6 micrograms/g), and T-2-tetraol (2.1 and 2.6 micrograms/g). The hybrid FS1 showed no signs of toxicity 6 h after treatment, and its twigs contained T-2 (0.8 micrograms/g), HT-2 (10.2 micrograms/g), and T-2-tetraol (10.8 micrograms/g). The leaves at 6 h contained 0.5 micrograms of T-2, 1.7 micrograms of HT-2, 0.01 microgram of 3'-hydroxy-HT-2, and 41 micrograms of T-2-tetraol per g. At 21 h, toxic signs were apparent and the twigs contained T-2 (39 micrograms/g), HT-2 (62 micrograms/g), 3'-hydroxy-HT-2 (0.8 microgram/g), and T-2-tetraol (22 micrograms/g).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
U937, a human macrophage-like cell line, spontaneously produces a factor which inhibited blastogenic responses of human blood T lymphocytes stimulated with tuberculin-purified protein derivative (PPD) or phytohemagglutinin (PHA). We investigated the mechanism of suppressor action of the U937 factor. The U937 suppressor factor inhibited interleukin 2 (IL 2) production by human blood T lymphocytes stimulated with PPD or PHA. IL 1 did not overcome the inhibitory action of the U937 factor on PPD-induced IL 2 production by human blood T lymphocytes. The U937 factor also inhibited the production of IL 2 by a human leukemic cell line, JURKAT, stimulated with PHA. The U937 suppressor factor interfered with the expression of Tac antigen (IL 2 receptor) on PPD- or PHA-stimulated blood T lymphocytes. The inhibitory activity of the U937 factor on Tac expression was not affected by the addition of IL 2 or a crude lymphokine-containing T cell supernatant. Tac expression was more sensitive than IL 2 production to inhibition by U937-conditioned medium. The U937 suppressor factor was precipitable by 33 to 67% saturated ammonium sulfate and was inactivated at pH 2 or pH 11. Sephacryl S-200 Gel filtration analysis of U937 culture supernatants revealed that the inhibitory activities for blastogenesis, IL 2 production, and Tac expression co-purified in fractions with an apparent m.w. between 67,000 and 130,000. These data indicate that U937 spontaneously produces a macromolecular suppressive factor with major locus of action on the production of IL 2 and the expression of the IL 2 receptor.  相似文献   

18.
19.
The 50% effective doses of fusarenon X, nivalenol, deoxynivalenol, and 15-acetyldeoxynivalenol required to reduce [3H]thymidine uptake in mitogen-stimulated human lymphocytes by 50% were 18, 72, 140, and 240 ng/ml, respectively. These results indicated that lymphotoxicity of 8-ketotrichothecenes decreased according to the C-4 substituent order acetyl greater than hydroxyl greater than hydrogen, whereas acetylation of position C-15 of deoxynivalenol caused a slight decrease in in vitro toxicity. The 50% effective doses for zearalenone, alpha-zearalenol, beta-zearalenol, alpha-zearalanol, and beta-zearalanol were 3,500, 6,300, 36,000, 3,750, and 33,000 ng/ml, respectively, suggesting that a keto group or alpha-hydroxyl at the position C-6' contributed to the lymphotoxicity of the parent molecule. The inhibitory effects of zearalenone analogs observed in the blastogenesis assay did not correlate with the estrogenic potencies of these compounds. All 8-ketotrichothecenes and zearalenone analogs tested were capable of inhibiting B- and T-cell subsets stimulated by a mitogen panel of leukoagglutinin, concanavalin A, and pokeweed mitogen.  相似文献   

20.
Detection of T-2 toxin by an improved radioimmunoassay.   总被引:8,自引:8,他引:0       下载免费PDF全文
T-2 toxin in serum, urine, and saline was analyzed by a modified radioimmunoassay procedure. The specimens were added directly to the assay tubes without extraction steps. The reaction between antibody and ligands was optimal at 1 h. Albumin-coated charcoal was used to separate bound from free radioactivity. Quenching, which occurred with hemolyzed specimens, was corrected by a wet oxidation process with 60% perchloric acid and 30% hydrogen peroxide. The shorter incubation times resulted in an assay that takes less than 6 h to complete. The average affinity constant of the antibody (Km) was 1.75 X 10(10) liters/mol. The sensitivity was 1 ng per assay or 10 ng/ml. Among the other trichothecenes tested, only H-T-2 cross-reacted significantly (10.3%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号