首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of moist extrusion processing of diets containing fish meal (FM) and conventional defatted soybean meal (SBM) or untoasted defatted soybean meal (white flakes [WF]) on amino acid composition, trypsin inhibitor activity (TIA), and apparent total tract digestibility of nutrients were studied. Three diets with the nutritional characteristics of feeds for salmonid fish were formulated: one control based on FM as protein source and two others where 40% of total amino acids from FM were substituted by either SBM or WF. Each diet was fed to mink either as an unextruded mixture of the ingredients or as extruded pellets in order to determine the effect of extrusion processing. Extrusion did not change the amino acid composition of the diets significantly, but reduced the TIA of both diets containing soy products by approximately 76%. Intake of the unextruded WF diet was only one-third compared with the other diets. The dry matter concentration in faeces from mink fed diets containing soy products was significantly lower than in mink fed the FM diet. Digestibility of crude protein, all amino acids and fat was lower, but starch higher, in the unextruded WF diet than in the FM and SBM diets, whereas no significant differences were found among the extruded diets. Extrusion of the WF diet increased digestibility of protein and all amino acids. The greatest increase in digestibility after extrusion of the WF diet was observed for cysteine followed by tryptophan. Extrusion of the FM and SBM diets had no significant effect on amino acid digestibility. Digestibility of starch was, in general, increased by extrusion. It is concluded that the heat treatment involved in typical moist extrusion processing used for fish feed may be sufficient to inactivate most of the TIA in unheated soybean meal, and to increase digestibility of the protein in WF to approximately the same level as found for SBM and FM. Still, extrusion is a lenient process with minor effects on nutrient digestibility of diets containing fish meal or toasted soybean meal as major protein sources.  相似文献   

2.
Abstract

The effects of moist extrusion processing of diets containing fish meal (FM) and conventional defatted soybean meal (SBM) or untoasted defatted soybean meal (white flakes [WF]) on amino acid composition, trypsin inhibitor activity (TIA), and apparent total tract digestibility of nutrients were studied. Three diets with the nutritional characteristics of feeds for salmonid fish were formulated: one control based on FM as protein source and two others where 40% of total amino acids from FM were substituted by either SBM or WF. Each diet was fed to mink either as an unextruded mixture of the ingredients or as extruded pellets in order to determine the effect of extrusion processing. Extrusion did not change the amino acid composition of the diets significantly, but reduced the TIA of both diets containing soy products by approximately 76%. Intake of the unextruded WF diet was only one-third compared with the other diets. The dry matter concentration in faeces from mink fed diets containing soy products was significantly lower than in mink fed the FM diet. Digestibility of crude protein, all amino acids and fat was lower, but starch higher, in the unextruded WF diet than in the FM and SBM diets, whereas no significant differences were found among the extruded diets. Extrusion of the WF diet increased digestibility of protein and all amino acids. The greatest increase in digestibility after extrusion of the WF diet was observed for cysteine followed by tryptophan. Extrusion of the FM and SBM diets had no significant effect on amino acid digestibility. Digestibility of starch was, in general, increased by extrusion. It is concluded that the heat treatment involved in typical moist extrusion processing used for fish feed may be sufficient to inactivate most of the TIA in unheated soybean meal, and to increase digestibility of the protein in WF to approximately the same level as found for SBM and FM. Still, extrusion is a lenient process with minor effects on nutrient digestibility of diets containing fish meal or toasted soybean meal as major protein sources.  相似文献   

3.
Na(+)/H(+)-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na(+)-dependent processes to acid extrusion, 2) sensitivity to Na(+)/H(+) exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pH(i)) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na(+) concentration ([Na(+)](o)) during pH(i) recovery decreased H(+) efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na(+). The Na(+)/H(+) exchange inhibitors ethylisopropylamiloride and amiloride inhibited H(+) efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na(+)](o) and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na(+)/H(+) exchange by isoforms NHE1, NHE2, and NHE3.  相似文献   

4.
5.
The proinflammatory cytokine interleukin-1 (IL-1) promotes the degradation of articular cartilage by inhibiting matrix synthesis and stimulating degradative enzyme activity. Generation of nitric oxide (NO) in response to IL-1 is implicated in these actions. The catabolic actions of IL-1 can be inhibited by manoeuvres which are predicted to dissipate H+ gradients across the chondrocyte plasma membrane. In the present study, the effects of IL-1 on H+ extrusion from bovine articular chondrocytes were investigated. pH was measured using the H+-sensitive fluorescent dye BCECF. Cells were acidified by ammonium rebound and the contribution of the Na+-H+ exchanger (NHE) and of the vacuolar H+-ATPase to acid extrusion was characterised by ion substitution and inhibitor studies. Overnight (18 h) exposure to IL-1 stimulated acid extrusion in a dose-dependent fashion. This effect represented stimulation of both NHE and the ATPase. Characterisation of the timecourse of this response indicated that, while stimulation of acid extrusion was rapid, effects on the ATPase were only apparent after greater than 8h incubation with the cytokine. In keeping with this observation, the protein synthesis inhibitor cycloheximide abolished the stimulatory effect of IL-1 on ATPase-mediated extrusion. The upregulation of ATPase activity by IL-1 was inhibited by the NOS inhibitor L-NAME and by the NO scavenger PTIO. In cells which had not been exposed to IL-1, treatment with the NO donor SNAP also stimulated acid extrusion by the ATPase. In contrast, NHE activity was not altered by any of these compounds. Taken together, these results imply that IL-1 can stimulate acid extrusion in chondrocytes and that this reflects rapid upregulation of NHE with slower induction of H+-ATPase activity which requires elevated levels of NO. While ATPase induction involves protein synthesis, this process may not constitute synthesis of ATPase proteins per se, but rather of some associated regulatory process.  相似文献   

6.
The inhibitory effects of uncouplers on amino acid transport into three marine bacteria, Vibrio alginolyticus 118, Vibrio parahaemolyticus 113, and Alteromonas haloplanktis 214, into a moderate halophile, Vibrio costicola NRC 37001, and into Escherichia coli K-12 were found to vary depending upon the uncoupler tested, its concentration, and the pH. Higher concentrations of all of the uncouplers were required to inhibit transport at pH 8.5 than at pH 7.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone showed the greatest reduction in inhibitory capacity as the pH was increased, carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed less reduction, and 3,3',4',5-tetrachlorosalicylanilide was almost as effective as an inhibitor of amino acid transport at pH 8.5 as at pH 7.0 for all of the organisms except A. haloplanktis 214. Differences between the protonophores in their relative activities at pHs 7.0 and 8.5 were attributed to differences in their pK values. 3,3',4',5-Tetrachlorosalicylanilide, carbonyl cyanide m-chlorophenylhydrazone, 2-heptyl-4-hydroxyquinoline-N-oxide, and NaCN all inhibited Na+ extrusion from Na+-loaded cells of V. alginolyticus 118 at pH 8.5. The results support the conclusion that Na+ extrusion from this organism at pH 8.5 occurs as a result of Na+/H+ antiport activity. Data are presented indicating the presence in V. alginolyticus 118 of an NADH oxidase which is stimulated by Na+ at pH 8.5.  相似文献   

7.
Aims:  To evaluate the effect of the extrusion-cooking process with the addition of different acids concentration on the stability of B-aflatoxins in sorghum.
Methods and Results:  Experimental units (EU) of sorghum flour contaminated with B-aflatoxins (140 ppb) were extrusion cooked with aqueous lactic or citric acid at six different concentrations. The effects of the two extrusion variables (moisture content and acid concentration) were analysed as a completely randomized factorial 3 × 6 design. Under some conditions, the aflatoxin reduction is more effective when using aqueous citric acid (up to 92%), than when using aqueous lactic acid (up to 67%).
Conclusions:  With citric acid, some extrusion treatments produced higher aflatoxin degradation rates, than those produced with lactic acid.
Significance and Impact of the Study:  Aflatoxin contamination is a great risk both for human as well as for animal health in underdeveloped countries; consequently, practical and economical detoxification procedures are needed that eliminate or at least minimize the aflatoxin risk, through lowering aflatoxin concentrations in grains. Under these considerations, extrusion process can be used for reduction in the aflatoxin content in contaminated grains.  相似文献   

8.
Abstract. The present investigations were designed to identify proton pumps in seed coats of Phaseolus vulgaris L. Vacated seed-coat halves were exposed to bathing solutions with indicators for proton pump action and the pH changes in the media were measured. Fusicoccin increased the rate of proton extrusion from the seed coats. Orthovanadate and abscisic acid retarded the proton extrusion evoked by fusicoccin. Abolition of the proton extrusion by parachloromercuriphenylsulphonic acid was partially reversed by diethioerythritol. The extrusion was stimulated by high osmolarities (100 mol m−3 sorbitol), potassium ions (100 mol m−3 KCI) and light. Old seed coats reacted more rapidly to fusicoccin treatments than young ones. Proton pumping in seed coats and cotyledons showed differential responses to fusicoccin, K+ and sucrose. In contrast to seed coats, medium acidification by cotyledons was prohibited by addition of sucrose. The significance of proton pumps for photosynthate transfer in vivo is discussed.  相似文献   

9.
The stimulation of the alpha(1)-adrenergic receptor by phenylephrine results in a sizable extrusion of Mg2+ from liver cells. Phenylephrine-induced Mg2+ extrusion is almost completely abolished by the removal of extracellular Ca2+ or in the presence of SKF-96365, an inhibitor of capacitative Ca2+ entry. In contrast, Mg2+ extrusion is only partially inhibited by the Ca2+-channel blockers verapamil, nifedipine, or (+)BAY-K8644. Furthermore, Mg2+ extrusion is almost completely prevented by TMB-8 (a cell-permeant inhibitor of the inositol trisphosphate receptor), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (an intracellular Ca2+-chelating agent), or W-7 (a calmodulin inhibitor) Thapsigargin can mimic the effect of phenylephrine, and the coaddition of thapsigargin and phenylephrine does not result in an enlarged extrusion of Mg2+ from the hepatocytes. Regardless of the agonist used, Mg2+ extrusion is inhibited by >90% when hepatocytes are incubated in the presence of physiological Ca(2+) but in the absence of extracellular Na(+). Together, these data suggest that the stimulation of the hepatic alpha(1)-adrenergic receptor by phenylephrine results in an extrusion of Mg2+ through a Na(+)-dependent pathway and a Na(+)-independent pathway, both activated by changes in cellular Ca2+.  相似文献   

10.
Studies of intracellular pH (pHi) in nervous tissue are summarized and recent investigation of intracellular and extracellular pH (pHo) in the isolated brain stem of the lamprey is reviewed. In the lamprey, pHi regulation was studied in single reticulospinal neurons using double-barrel ion-selective microelectrodes (ISMs). In nominally HCO3(-)-free HEPES-buffered media, acute acid loading was followed by a spontaneous recovery of pHi requiring 10-20 min and was associated with a prolonged rise in intracellular Na+. The recovery of pHi was blocked by 1-2 mM amiloride. Amiloride also caused a small rise in pHo. Substitution of external Na+ caused a slow intracellular acidification and extracellular alkalinization. Return of external Na+ reversed these effects. Transition from HEPES to HCO3(-)-buffered media increased the rate of acid extrusion during recovery of pHi. Recovery in HCO3(-)-buffered media was inhibited by 4,4'-diisothio-cyanostilbene-2,2'-disulfonic acid and was slowed after exposure to Cl(-)-free media. Following inhibition of acid extrusion by amiloride, transition to HCO3- media restored pHi recovery. These data indicate that lamprey neurons recover from acute acid loads by both Na+-H+ exchange and an independent HCO3(-)-dependent mechanism. Evidence for HCO3(-)-dependent acid extrusion in other vertebrate cells and the protocols of pHi studies using ISMs are discussed.  相似文献   

11.
Plant hormones play many important roles in plant growth and development. We previously tried to control barley (Hordeum vulgare L.) flowering in ear cultures treated with plant hormones and related compounds, and found that anther extrusion from florets was reduced by treatment with 100 ppm methyl jasmonate (MJA). In the present study, we show that 10 ppm MJA also inhibits anther extrusion in barley ear cultures. Spraying field-grown barley ears with MJA clarified the efficacy of this chemical under field conditions, but higher concentrations (100 to 1000 ppm MJA) were required. In addition, we investigated the activity of jasmonic acid (JA) analogues and cucurbic acid analogues in barley ear cultures. Some esters of JA showed similar effects to that of MJA, but effects of 9,10-dihydrojasmonic acid (DJA) and cucurbic acid derivatives were lower than that of MJA. In light of these data, we discuss the structural requirements for increased inhibition of barley anther extrusion.  相似文献   

12.
13.
Arachidonic acid activates Ca2+ extrusion in macrophages   总被引:2,自引:0,他引:2  
Stimulation of macrophages with platelet-activating factor (PAF) elicits an increase of intracellular calcium concentration, Ca2+i, which was monitored here at the single cell level with the calcium-sensitive dye Fura-2. The sustained component of this Ca2+i increase reflects the dynamic balance achieved between enhanced Ca2+ influx and efflux. In macrophages where a steady increase of Ca2+i has been evoked by 50 nM thapsigargin (a molecule known to empty Ca2+ stores and elevate Ca2+i in various cell types), PAF activates Ca2+ efflux, without causing a preceding increase in Ca2+i. This result shows that in this case, Ca2+ extrusion is not merely a consequence of a Ca2+i increase. PAF-evoked Ca2+ extrusion does not result from the activation of the Na+/Ca2+ exchanger. Exogenous arachidonic acid (10-100 microM) elicits Ca2+ efflux in macrophages where Ca2+i has been previously elevated by either PAF or thapsigargin. PAF-induced Ca2+ extrusion is blocked by 4-bromophenacylbromide, an inhibitor of arachidonic acid production by phospholipase A2. Together, these results suggest that arachidonic acid, which is produced in PAF-stimulated macrophages, contributes to the regulation of a Ca2+ extrusion system, which is presumably a Ca2(+)-ATPase.  相似文献   

14.
The ion transport system responsible for intracellular pH (pHi) regulation in squid giant axons was examined in experiments with pH- sensitive microelectrodes and isotopic fluxes of Na+ and Cl-. In one study, axons were acid-loaded and the rate of the subsequent pHi recovery was used to calculate the acid extrusion rate. There was an absolute dependence of acid extrusion on external Na+, external HCO-3 (at constant pH), and internal Cl-. Furthermore, the dependence of the acid extrusion rate on each of these three parameters was described by Michaelis-Menten kinetics. Acid extrusion was stimulated by an acid pHi, required internal ATP, and was blocked by external 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). Under a standard set of conditions (i.e., [HCO-3]o = 12 mM, pHo = 8.00, [Na+]o = 425 mM, [Cl-]i = 150 mM, [ATP]i = 4 mM, pHi = 6.5, and 16 degrees C), the mean acid extrusion rate was 7.5 pmol X cm-2 X s-1. In a second study under the above standard conditions, the unidirectional Na+ efflux (measured with 22Na) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean influx was about 3.4 pmol X cm-2 X s- 1. This net influx required external HCO-3, internal Cl-, and acid pHi, internal ATP, and was blocked by SITS. In the final series of experiments under the above standard conditions, the unidirectional Cl- influx (measured with 36Cl) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean efflux was approximately 3.9 pmol X cm-2 X s-1. This net efflux required external HCO-3, external Na+, an acid pHi, internal ATP, and was blocked by SITS. We conclude that the pHi-regulating system mediates the obligate net influx of HCO-3 (or equivalent species) and Na+ and the net efflux of Cl- in the stoichiometry of 2:1:1. The transport system is stimulated by intracellular acid loads, requires ATP, and is blocked by SITS.  相似文献   

15.
The temperature window for the extrusion of glycerol-plasticized wheat gluten was increased by the use of salicylic acid, a known scorch retarder and radical scavenger. It was possible to extrude 30 wt % glycerol-wheat gluten films with a die-head temperature as high as 135 degrees C, rather than 95 degrees C, by incorporating only 1 wt % salicylic acid. Small effects of shear-induced heating during extrusion at the higher temperatures suggested that the acid acted as a lubricant and viscosity reducer. The latter was suggested to originate primarily from the salicylic-acid-induced reduction in the degree of protein aggregation/cross-linking, as indicated by size-exclusion high-performance liquid chromatography and chemiluminescence. Electron paramagnetic resonance spectroscopy on extruded films indicated that the beneficial effect of salicylic acid was due to its radical scavenging effect. Tensile tests on extrudates revealed that the materials produced at the substantially higher processing temperature were still ductile. The complex shear modulus increased more slowly with increasing salicylic acid content above 110-120 degrees C, indicating that the aggregation/cross-linking rate was slower with salicylic acid, that is, that it did have a scorch-retarding effect, besides yielding a lower final degree/complexity of aggregation.  相似文献   

16.
Acid extrusion responses to prostaglandin E2 were investigated in Chinese hamster ovary (CHO) cells heterologously expressing human EP1, EP2, and EP3I receptors (hEP1, hEP2 and hEP3I) by using a microphysiometer that detected small pH changes in the extracellular microenvironment. In the cells expressing hEP1, which is known to increase intracellular Ca2+, prostaglandin E2 (1 and 10 nM) slowly accelerated acid extrusion, but at higher concentrations an initial transient phase (approximately 5 times greater than the basal acidification) overlapped the slowly developing phase. In contrast, the cells expressing hEP2, which evokes cAMP production, showed dual responses to prostaglandin E2: an initial reduction followed by an acceleration of acid extrusion. In the cells expressing hEP3I, which is known to produce both a decrease in cAMP and a modest increase in intracellular Ca2+, acid extrusion was gradually accelerated by prostaglandin E2 and reached a plateau at around 2 min. Elimination of extracellular Ca2+ diminished the responses to prostaglandin E2 in hEP1 cells, but had little effect on the responses in hEP2 and hEP3I cells. Forskolin mimicked the dual effects of prostaglandin E2 observed in the hEP2 cells. Pretreatment with pertussis toxin inhibited the response to prostaglandin E2 in hEP3I cells, but the responses in hEP1 and hEP2 cells were not affected. Na+/H+ exchanger (NHE) inhibitors (EIPA and HOE642) suppressed all the responses induced by prostaglandin E2 in hEP1, hEP2, and hEP3I cells. These results suggest that EP receptor subtypes regulate acid extrusion mainly via NHE-1 through distinct signal transduction pathways in CHO cells.  相似文献   

17.
A whole-cell model of a macrophage (mphi) is developed to simulate pH and volume regulation during a NH4Cl prepulse challenge. The cell is assumed spherical, with a plasma membrane that separates the cytosolic and extracellular bathing media. The membrane contains background currents for Na+, K+ and Cl-, a Na(+)-K+ pump, a V-type H(+)-extruder (V-ATPase), and a leak pathway for NH4+. Cell volume is controlled by instantaneous osmotic balance between cytosolic and extracellular osmolytes. Simulations reveal that the mphi model can mimic alterations in measured pH(i) and cell volume (Vol(i)) data during and after delivery of an ammonia prepulse, which induces an acid load within the cell. Our analysis indicates that there are substantial problems in quantifying transporter-mediated H+ efflux solely from experimental observations of pH(i) recovery, as is commonly done in practice. Problems stemming from the separation of effects arise, since there is residual NH4+ dissociation to H+ inside the mphi during pH(i) recovery, as well as, proton extrusion via the V-ATPase. The core assumption of conventional measurement techniques used to estimate the H+ extrusion current (I(H)) is that the recovery phase is solely dependent on transporter-mediated H+ extrusion. However, our model predictions suggest that there are major problems in using this approach, due to the complex interactions between I(H), NH3/NH4+ buffering and NH3/NH4+ efflux during the active acid extrusion phase. That is, the conventional buffer capacity-based I(H) estimation must also take into account the perturbation that a prepulse challenge brings to the cytoplasmic acid buffer itself. The importance of this whole-cell model of mphipH(i) and volume regulation lies in its potential for extension to the characterization of several other types of non-excitable cells, such as the microglia (brain macrophage) and the T-lymphocyte.  相似文献   

18.
The rapid uptake of weak acids permeant in the uncharged form is accompanied in maize and wheat root segments by a hyperpolarization of the transmembrane electrical potential and an increase in K+ uptake, suggesting a stimulation of the plasmalemma H+ pump. The evaluation of weak acid-induced H+ extrusion must take into account the alkalinization of the medium due to the rapid uptake of the uncharged form of the acid, partially masking the proton pump-mediated extrusion of H+. The data corrected for this interference show that the lipophilic butyric acid and trimethyl acetic acid induce in maize and in wheat root segments a significant increase in `real' H+ extrusion, roughly matching the increase in net K+ uptake. The presence of K+ significantly increases the rate of uptake of the weak acid, possibly as a consequence of an alkalinization of the cytosol associated with K+ absorption. In maize root segments, the effects of fusicoccin and those of butyric acid on both K+ uptake and H+ extrusion are clearly synergistic, thus suggesting distinct modes of action. These results support the view that the activity of the plasmalemma H+ pump is regulated by the value of cytosolic pH.  相似文献   

19.
Low initiation frequency is one of the main barriers in applying somatic embryogenesis to the clonal production of Pinus species. Factors affecting initiation, including basal medium, plant growth regulators, and Phytagel concentration, have been investigated in loblolly pine (Pinus taeda L.). BM1 basal medium proved superior to DCR1 and LP (LP basal salts plus BM1 organic nutrients). No extrusion from megagametophytes was exhibited on LP medium. The combination of 3 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/l 6-benzylaminopurine (BA) resulted in a higher extrusion frequency than that of 11 mg/l 2,4-D, 4.5 mg/l BA and 4.3 mg/l kinetin. Phytagel at 1 g/l resulted in the highest explant browning, but the lowest extrusion frequency, while 4 g/l Phytagel induced some dry embryogenic extrusions. Phytagel at 2 g/l was regarded as the best level for initiation of embryogenic cultures. Received: 23 December 1996 / Revision received: 22 July 1997 / Accepted: 2 September 1997  相似文献   

20.
We studied the effect of troglitazone on cellular acid-base balance and alanine formation in isolated rat mesangial cells. Mesangial cells were grown to confluency in RPMI 1640 media on 30-mm chambers used to monitor both cellular pH using the pH-sensitive dye 2'7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein and metabolic acid production as well as glutamine metabolism. Troglitazone (10 microM) induced a spontaneous cellular acidosis (6.95 +/- 0.02 vs. 7.47 +/- 0.04, respectively; P < 0.0001) but without an increase in lactic acid production. Alanine production was reduced 64% (P < 0.01) consistent with inhibition of the glutamate transamination. These findings pointed to a decrease in acid extrusion rather than an increase in acid production as the underlying mechanism leading to the cellular acidosis. To test their acid extrusion capabilities, mesangial cells were acid loaded with NH and then allowed to recover in Krebs-Henseleit media or in Krebs-Henseleit media minus bicarbonate (HEPES substituted), and the recovery response (Delta pH(i)/min) was monitored. In the presence of 10 microM troglitazone, the recovery response to the NH acid load was virtually eliminated in the bicarbonate-buffered media (0.00 +/- 0.001 vs. 0.06 +/- 0.02 pH(i)/min, P < 0.0001 vs. control) and reduced 75% in HEPES-buffered media (0.01 +/- 0.01 vs. 0.04 +/- 0.02 pH(i)/min, P < 0.002 vs. control). These results show that troglitazone induces a spontaneous cellular acidosis resulting from a reduction in cellular acid extrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号