首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NDUFV1 mutations have been related to encephalopathic phenotypes due to mitochondrial energy metabolism disturbances. In this study, we report two siblings affected by a diffuse leukodystrophy, who carry the NDUFV1 c.1156C>T (p.Arg386Cys) missense mutation and a novel 42-bp deletion. Bioinformatic and molecular analysis indicated that this deletion lead to the synthesis of mRNA molecules carrying a premature stop codon, which might be degraded by the nonsense-mediated decay system. Our results add information on the molecular basis and the phenotypic features of mitochondrial disease caused by NDUFV1 mutations.  相似文献   

2.
Reduced nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) is the largest complex of the mitochondrial respiratory chain and complex I deficiency accounts for approximately 30% cases of respiratory-chain deficiency in humans. Only seven mitochondrial DNA genes, but >35 nuclear genes encode complex I subunits. In an attempt to elucidate the molecular bases of complex I deficiency, we studied the six most-conserved complex I nuclear genes (NDUFV1, NDUFS8, NDUFS7, NDUFS1, NDUFA8, and NDUFB6) in a series of 36 patients with isolated complex I deficiency by denaturing high-performance liquid chromatography and by direct sequencing of the corresponding cDNA from cultured skin fibroblasts. In 3/36 patients, we identified, for the first time, five point mutations (del222, D252G, M707V, R241W, and R557X) and one large-scale deletion in the NDUFS1 gene. In addition, we found six novel NDUFV1 mutations (Y204C, C206G, E214K, IVS 8+41, A432P, and del nt 989-990) in three other patients. The six unrelated patients presented with hypotonia, ataxia, psychomotor retardation, or Leigh syndrome. These results suggest that screening for complex I nuclear gene mutations is of particular interest in patients with complex I deficiency, even when normal respiratory-chain-enzyme activities in cultured fibroblasts are observed.  相似文献   

3.
Mitochondrial complex I (CI) deficiency is the most common oxidative phosphorylation disorder described. It shows a wide range of phenotypes with poor correlation within genotypes. Herein we expand the clinics and genetics of CI deficiency in the brazilian population by reporting three patients with pathogenic (c.640G>A, c.1268C>T, c.1207dupG) and likely pathogenic (c.766C>T) variants in the NDUFV1 gene. We show the mutation c.766C>T associated with a childhood onset phenotype of hypotonia, muscle weakness, psychomotor regression, lethargy, dysphagia, and strabismus. Additionally, this mutation was found to be associated with headaches and exercise intolerance in adulthood. We also review reported pathogenic variants in NDUFV1 highlighting the wide phenotypic heterogeneity in CI deficiency.  相似文献   

4.
The genomic organization of the human 51-kDa subunit gene (NDUFV1) on human Chromosome (Chr) 11q13 was determined. The NDUFV1 gene consists of 10 exons. Exon 1 encodes for the 20-amino-acids-long import sequence, and exon 1 through 10 codes for the 444-amino-acids-long mature protein. The protein sequence is highly conserved between human and bovine. Northern blotting analysis showed that the NDUFV1 gene expression varies widely among tissues and that in testis a unique mRNA species is present. In comparison with the other complex I flavoproteins, the expression of the 51-kDa gene in pancreatic tissue is high. Received: 5 May 1998 / Accepted: 28 August 1998  相似文献   

5.
Caveolin-1在不同肿瘤中发挥作用不同,既发挥抑癌基因样作用又发挥癌基因样作用.旨在分析caveolin-1 在小鼠肝癌细胞系中的表达情况及建立稳定表达外源caveolin-1的Hepa1-6细胞.利用RT-PCR和Western-blot方法检测caveolin-1在小鼠肝癌H22、Hea-F和Hepa1-6细胞中的表达;通过分子克隆构建小鼠caveolin-1 cDNA真核表达栽体,利用脂质体转染等方法建立稳定表达外源caveolin-1的Hepa1-6细胞株;通过RT-PCR、Western-blot、免疫细胞化学等方法鉴定其稳定表达细胞株.结果显示,caveolin-1在Hepa1-6细胞中表达呈阴性,在H22和Hca-F 中高表达;成功获得小鼠caveolin-1 cDNA真核表达载体pEGFP-N2/Cav-1,筛选并鉴定出高表达外源caveolin-1的Hepa1-6稳定细胞株C1和C4,为进一步分析caveolin-1在肝癌中所发挥的作用奠定了一定的研究基础.  相似文献   

6.
BACKGROUND: Expression of hypoxia-related tissue factors in 1p-aberrant oligodendroglial neoplasms diminishes patient outcome. Differentiated embryo-chondrocyte expressed gene 1 (DEC1) has been described as novel hypoxia-related tissue factor. In our study, we assessed the expression of DEC1 in 1p aberrant oligodendroglial neoplasms and its association with necrosis and expression of hypoxia-inducible factor 1alpha (HIF-1alpha), carbonic anhydrase-9 (CA9), and vascular endothelial growth factor-mRNA (VEGF). MATERIALS AND METHODS: 44 primary and 16 recurrent oligodendroglial neoplasms with 1p-aberrations were investigated immunohistochemically for the expression of DEC1, HIF-1alpha, and CA9. Expression of VEGF was investigated using in situ hybridization. DEC1 expression was correlated with necrosis and with expression of HIF-1alpha, CA9, and VEGF. RESULTS: DEC1 was expressed in tumor cell nuclei, and occasionally in nuclei of endothelial cells, and glial and neuronal cells of surrounding brain tissue. High expression (>10% of tumor cells immunolabeled) of DEC1 was found in 56 cases, low expression (<10% of tumor cells immunolabeled) was found in 3 cases. In 1 case no expression of DEC1 was evident. DEC1 expression showed no topographical association with necrosis or expression of HIF-1alpha, CA9, or VEGF. CONCLUSION: DEC1 expression is found in the majority of 1p-aberrant oligodendroglial neoplasms and does not correlate with necrosis or expression of HIF-1alpha, CA9, VEGF. Thus, immunohistochemical analysis of DEC1 expression is in our hands not suitable for detection of tissue hypoxia in this type of primary brain tumor.  相似文献   

7.
CYP1A1 is considered to be involved mainly in oxidative metabolism of exogenous chemicals and drugs. Synthesis of this hemoprotein is induced in livers, lungs, and other tissues of experimental animals by the administration of these chemicals. Regulatory mechanisms of the induction process of the protein have been investigated by the DNA transfer method using the isolated genomic DNA. At least two kinds of cis-acting regulatory DNA sequences are localized 5' upstream of the gene. One is distributed five times in a relatively wide range from -0.5 to -3.5 kb and functions as an inducible enhancer-designated xenobiotic responsive element or XRE. The other is localized just upstream of the TATA sequence and acts as a regulatory element for the constitutive expression. The two DNA elements are required for a high level of the inducible expression. Their cognate DNA binding factors are recognized in the nuclear extracts of Hepa-1 cells and rat liver cells which show the inducible expression of CYP1A1 in response to the inducer. This paper discusses the regulatory mechanisms of CYP1A1 gene expression by summarizing the present state of knowledge about properties of the DNA regulatory elements and their cognate DNA-binding factors.  相似文献   

8.
9.
Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.  相似文献   

10.
The mitochondrial respiratory uncoupling protein 1 (UCP1) partially uncouples substrate oxidation and oxidative phosphorylation to promote the dissipation of cellular biochemical energy as heat in brown adipose tissue. We have recently shown that expression of UCP1 in 3T3-L1 white adipocytes reduces the accumulation of triglycerides. Here, we investigated the molecular basis underlying UCP1 expression in 3T3-L1 adipocytes. Gene expression data showed that forced UCP1 expression down-regulated several energy metabolism pathways; but ATP levels were constant. A metabolic flux analysis model was used to reflect the gene expression changes onto metabolic processes and concordance was observed in the down-regulation of energy consuming pathways. Our data suggest that adipocytes respond to long-term mitochondrial uncoupling by minimizing ATP utilization.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号