首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mtDNA variation of 411 individuals from 10 aboriginal Siberian populations was analyzed in an effort to delineate the relationships between Siberian and Native American populations. All mtDNAs were characterized by PCR amplification and restriction analysis, and a subset of them was characterized by control region sequencing. The resulting data were then compiled with previous mtDNA data from Native Americans and Asians and were used for phylogenetic analyses and sequence divergence estimations. Aboriginal Siberian populations exhibited mtDNAs from three (A, C, and D) of the four haplogroups observed in Native Americans. However, none of the Siberian populations showed mtDNAs from the fourth haplogroup, group B. The presence of group B deletion haplotypes in East Asian and Native American populations but their absence in Siberians raises the possibility that haplogroup B could represent a migratory event distinct from the one(s) which brought group A, C, and D mtDNAs to the Americas. Our findings support the hypothesis that the first humans to move from Siberia to the Americas carried with them a limited number of founding mtDNAs and that the initial migration occurred between 17,000-34,000 years before present.  相似文献   

2.
There is general agreement that the Native American founder populations migrated from Asia into America through Beringia sometime during the Pleistocene, but the hypotheses concerning the ages and the number of these migrations and the size of the ancestral populations are surrounded by controversy. DNA sequence variations of several regions of the genome of Native Americans, especially in the mitochondrial DNA (mtDNA) control region, have been studied as a tool to help answer these questions. However, the small number of nucleotides studied and the nonclocklike rate of mtDNA control-region evolution impose several limitations to these results. Here we provide the sequence analysis of a continuous region of 8.8 kb of the mtDNA outside the D-loop for 40 individuals, 30 of whom are Native Americans whose mtDNA belongs to the four founder haplogroups. Haplogroups A, B, and C form monophyletic clades, but the five haplogroup D sequences have unstable positions and usually do not group together. The high degree of similarity in the nucleotide diversity and time of differentiation (i.e., approximately 21,000 years before present) of these four haplogroups support a common origin for these sequences and suggest that the populations who harbor them may also have a common history. Additional evidence supports the idea that this age of differentiation coincides with the process of colonization of the New World and supports the hypothesis of a single and early entry of the ancestral Asian population into the Americas.  相似文献   

3.
It is well accepted that the Americas were the last continents reached by modern humans, most likely through Beringia. However, the precise time and mode of the colonization of the New World remain hotly disputed issues. Native American populations exhibit almost exclusively five mitochondrial DNA (mtDNA) haplogroups (A-D and X). Haplogroups A-D are also frequent in Asia, suggesting a northeastern Asian origin of these lineages. However, the differential pattern of distribution and frequency of haplogroup X led some to suggest that it may represent an independent migration to the Americas. Here we show, by using 86 complete mitochondrial genomes, that all Native American haplogroups, including haplogroup X, were part of a single founding population, thereby refuting multiple-migration models. A detailed demographic history of the mtDNA sequences estimated with a Bayesian coalescent method indicates a complex model for the peopling of the Americas, in which the initial differentiation from Asian populations ended with a moderate bottleneck in Beringia during the last glacial maximum (LGM), around approximately 23,000 to approximately 19,000 years ago. Toward the end of the LGM, a strong population expansion started approximately 18,000 and finished approximately 15,000 years ago. These results support a pre-Clovis occupation of the New World, suggesting a rapid settlement of the continent along a Pacific coastal route.  相似文献   

4.
Ancestral Asian source(s) of new world Y-chromosome founder haplotypes   总被引:15,自引:0,他引:15       下载免费PDF全文
Haplotypes constructed from Y-chromosome markers were used to trace the origins of Native Americans. Our sample consisted of 2,198 males from 60 global populations, including 19 Native American and 15 indigenous North Asian groups. A set of 12 biallelic polymorphisms gave rise to 14 unique Y-chromosome haplotypes that were unevenly distributed among the populations. Combining multiallelic variation at two Y-linked microsatellites (DYS19 and DXYS156Y) with the unique haplotypes results in a total of 95 combination haplotypes. Contra previous findings based on Y- chromosome data, our new results suggest the possibility of more than one Native American paternal founder haplotype. We postulate that, of the nine unique haplotypes found in Native Americans, haplotypes 1C and 1F are the best candidates for major New World founder haplotypes, whereas haplotypes 1B, 1I, and 1U may either be founder haplotypes and/or have arrived in the New World via recent admixture. Two of the other four haplotypes (YAP+ haplotypes 4 and 5) are probably present because of post-Columbian admixture, whereas haplotype 1G may have originated in the New World, and the Old World source of the final New World haplotype (1D) remains unresolved. The contrasting distribution patterns of the two major candidate founder haplotypes in Asia and the New World, as well as the results of a nested cladistic analysis, suggest the possibility of more than one paternal migration from the general region of Lake Baikal to the Americas.  相似文献   

5.
The mtDNAs of 145 individuals representing the aboriginal populations of Chukotka-the Chukchi and Siberian Eskimos-were subjected to RFLP analysis and control-region sequencing. This analysis showed that the core of the genetic makeup of the Chukchi and Siberian Eskimos consisted of three (A, C, and D) of the four primary mtDNA haplotype groups (haplogroups) (A-D) observed in Native Americans, with haplogroup A being the most prevalent in both Chukotkan populations. Two unique haplotypes belonging to haplogroup G (formerly called "other" mtDNAs) were also observed in a few Chukchi, and these have apparently been acquired through gene flow from adjacent Kamchatka, where haplogroup G is prevalent in the Koryak and Itel'men. In addition, a 16111C-->T transition appears to delineate an "American" enclave of haplogroup A mtDNAs in northeastern Siberia, whereas the 16192C-->T transition demarcates a "northern Pacific Rim" cluster within this haplogroup. Furthermore, the sequence-divergence estimates for haplogroups A, C, and D of Siberian and Native American populations indicate that the earliest inhabitants of Beringia possessed a limited number of founding mtDNA haplotypes and that the first humans expanded into the New World approximately 34,000 years before present (YBP). Subsequent migration 16,000-13,000 YBP apparently brought a restricted number of haplogroup B haplotypes to the Americas. For millennia, Beringia may have been the repository of the respective founding sequences that selectively penetrated into northern North America from western Alaska.  相似文献   

6.
All major ABO blood alleles are found in most populations worldwide, whereas the majority of Native Americans are nearly exclusively in the O group. O allele molecular characterization could aid in elucidating the possible causes of group O predominance in Native American populations. In this work, we studied exon 6 and 7 sequence diversity in 180 O blood group individuals from four different Mesoamerican populations. Additionally, a comparative analysis of genetic diversity and population structure including South American populations was performed. Results revealed no significant differences among Mesoamerican and South American groups, but showed significant differences within population groups attributable to previously detected differences in genetic drift and founder effects throughout the American continent. Interestingly, in all American populations, the same set of haplotypes O1, O1v, and O1v(G542A) was present, suggesting the following: (1) that they constitute the main genetic pool of the founding population of the Americas and (2) that they derive from the same ancestral source, partially supporting the single founding population hypothesis. In addition, the consistent and restricted presence of the G542A mutation in Native Americans compared to worldwide populations allows it to be employed as an Ancestry informative marker (AIM). Present knowledge of the peopling of the Americas allows the prediction of the way in which the G542A mutation could have emerged in Beringia, probably during the differentiation process of Asian lineages that gave rise to the founding population of the continent. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Most genetic studies on the origins of Native Americans have examined data from mtDNA and Y‐chromosome DNA. To complement these studies and to broaden our understanding of the origin of Native American populations, we present an analysis of 1,873 X‐chromosomes representing Native American (n = 438) and other continental populations (n = 1,435). We genotyped 36 polymorphic sites, forming an informative haplotype within an 8‐kb DNA segment spanning exon 44 of the dystrophin gene. The data reveal continuity from a common Eurasian ancestry between Europeans, Siberians, and Native Americans. However, the loss of two haplotypes frequent in Eurasia (18.8 and 7%) and the rise in frequency of a third haplotype rare elsewhere, indicate a major population bottleneck in the peopling of the Americas. Although genetic drift appears to have played a greater role in the genetic differentiation of Native Americans than in the latitudinally distributed Eurasians, we also observe a signal of a differentiated ancestry of southern and northern populations that cannot be simply explained by the serial southward dilution of genetic diversity. It is possible that the distribution of X‐chromosome lineages reflects the genetic structure of the population of Beringia, itself issued from founder effects and a source of subsequent southern colonization(s). Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.  相似文献   

9.
The current model for peopling of the Americas involves divergence from an ancestral Asian population followed by a period of population isolation and genetic diversification in Beringia, and finally, a rapid expansion into and throughout the Americas. Studies in the 1970s sought to characterize the biological relationships between different indigenous populations and first proposed an occupation of Beringia. More recent studies using molecular genetic markers often neglect to reference early works that laid the groundwork for current colonization models. We address this matter, and briefly summarize the literature and technological advances that contributed to our current understanding of the peopling of the Americas. Furthermore, we argue that describing the process of peopling of the Americas as “migrations from Asia” minimizes the significant genetic diversification that occurred outside of Asia, and offends indigenous Americans by discounting their origin narratives and land rights. Rather than referring to the indigenous peoples of the Americas as “migrants” or “immigrants,” we recommend consistency in the language used to describe all post‐glacial expansions of people into Asia, Europe and the Americas.  相似文献   

10.
Until recently, the settlement of the Americas seemed largely divorced from the out‐of‐Africa dispersal of anatomically modern humans, which began at least 50,000 years ago. Native Americans were thought to represent a small subset of the Eurasian population that migrated to the Western Hemisphere less than 15,000 years ago. Archeological discoveries since 2000 reveal, however, that Homo sapiens occupied the high‐latitude region between Northeast Asia and northwest North America (that is, Beringia) before 30,000 years ago and the Last Glacial Maximum (LGM). The settlement of Beringia now appears to have been part of modern human dispersal in northern Eurasia. A 2007 model, the Beringian Standstill Hypothesis, which is based on analysis of mitochondrial DNA (mtDNA) in living people, derives Native Americans from a population that occupied Beringia during the LGM. The model suggests a parallel between ancestral Native Americans and modern human populations that retreated to refugia in other parts of the world during the arid LGM. It is supported by evidence of comparatively mild climates and rich biota in south‐central Beringia at this time (30,000‐15,000 years ago). These and other developments suggest that the settlement of the Americas may be integrated with the global dispersal of modern humans.  相似文献   

11.
We have initiated a study of ancient male migrations from Siberia to the Americas using Y chromosome polymorphisms. The first polymorphism examined, a C→T transition at nucleotide position 181 of the DYS199 locus, was previously reported only in Native American populations. To investigate the origin of this DYS199 polymorphism, we screened Y chromosomes from a number of Siberian, Asian, and Native American populations for this and other markers. This survey detected the T allele in all five Native American populations studied at an average frequency of 61%, and in two of nine native Siberian populations, the Siberian Eskimo (21%) and the Chukchi (17%). This finding suggested that the DYS199 T allele may have originated in Beringia and was then spread throughout the New World by the founding populations of the major subgroups of modern Native Americans. We further characterized Native American Y chromosome variation by analyzing two additional Y chromosome polymorphisms, the DYS287 Y Alu polymorphic (YAP) element insertion and a YAP-associated A→G transition at DYS271, both commonly found in Africans. We found neither African allele associated with the DYS199 T allele in any of the Native American or native Siberian populations. However, we did find DYS287 YAP+ individuals who harbored the DYS199 C allele in one Native American population, the Mixe, and in one Asian group, the Tibetans. A correlation of these Y chromosome alleles in Native Americans with those of the DYS1 locus, as detected by the p49a/p49f (p49a,f) probes on TaqI-digested genomic DNA, revealed a complete association of DYS1 alleles (p49a,f haplotypes) 13, 18, 66, 67 and 69 with the DYS199 T allele, while DYS1 alleles 8 and 63 were associated with both the DYS199 C and T allele. Received: 18 November 1996 / Accepted: 19 May 1997  相似文献   

12.
Anthropologists have assumed that reduced genetic diversity in extant Native Americans is due to a founder effect that occurred during the initial peopling of the Americas. However, low diversity could also be the result of subsequent historical events, such as the population decline following European contact. In this study, we show that autosomal DNA from ancient Native American skeletal remains can be used to investigate the low level of ABO blood group diversity in the Americas. Extant Native Americans exhibit a high frequency of blood type O, which may reflect a founder effect, genetic drift associated with the historical population decline, or natural selection in response to the smallpox epidemics that occurred following European contact. To help distinguish between these possibilities, we determined the ABO genotypes of 15 precontact individuals from eastern North America. The precontact ABO frequencies were not significantly different from those observed in extant Native Americans from the same region, but they did differ significantly from the ABO frequencies in extant Siberian populations. Studies of other precontact populations are needed to better test the three hypotheses for low ABO blood group diversity in the Americas, but our findings are most consistent with the hypothesis of a founder effect during the initial settlement of this continent.  相似文献   

13.
On the basis of comprehensive RFLP analysis, it has been inferred that approximately 97% of Native American mtDNAs belong to one of four major founding mtDNA lineages, designated haplogroups "A"-"D." It has been proposed that a fifth mtDNA haplogroup (haplogroup X) represents a minor founding lineage in Native Americans. Unlike haplogroups A-D, haplogroup X is also found at low frequencies in modern European populations. To investigate the origins, diversity, and continental relationships of this haplogroup, we performed mtDNA high-resolution RFLP and complete control region (CR) sequence analysis on 22 putative Native American haplogroup X and 14 putative European haplogroup X mtDNAs. The results identified a consensus haplogroup X motif that characterizes our European and Native American samples. Among Native Americans, haplogroup X appears to be essentially restricted to northern Amerindian groups, including the Ojibwa, the Nuu-Chah-Nulth, the Sioux, and the Yakima, although we also observed this haplogroup in the Na-Dene-speaking Navajo. Median network analysis indicated that European and Native American haplogroup X mtDNAs, although distinct, nevertheless are distantly related to each other. Time estimates for the arrival of X in North America are 12,000-36,000 years ago, depending on the number of assumed founders, thus supporting the conclusion that the peoples harboring haplogroup X were among the original founders of Native American populations. To date, haplogroup X has not been unambiguously identified in Asia, raising the possibility that some Native American founders were of Caucasian ancestry.  相似文献   

14.
The Americas were the last continents to be populated by humans, and their colonization represents a very interesting chapter in our species' evolution in which important issues are still contentious or largely unknown. One difficult topic concerns the details of the early peopling of Beringia, such as for how long it was colonized before people moved into the Americas and the demography of this occupation. A recent work using mitochondrial genome (mtDNA) data presented evidence for a so called "three-stage model" consisting of a very early expansion into Beringia followed by approximately 20,000 years of population stability before the final entry into the Americas. However, these results are in disagreement with other recent studies using similar data and methods. Here, we reanalyze their data to check the robustness of this model and test the ability of Native American mtDNA to discriminate details of the early colonization of Beringia. We apply the Bayesian Skyline Plot approach to recover the past demographic dynamic underpinning these events using different mtDNA data sets. Our results refute the specific details of the "three-stage model", since the early stage of expansion into Beringia followed by a long period of stasis could not be reproduced in any mtDNA data set cleaned from non-Native American haplotypes. Nevertheless, they are consistent with a moderate population bottleneck in Beringia associated with the Last Glacial Maximum followed by a strong population growth around 18,000 years ago as suggested by other recent studies. We suggest that this bottleneck erased the signals of ancient demographic history from recent Native American mtDNA pool, and conclude that the proposed early expansion and occupation of Beringia is an artifact caused by the misincorporation of non-Native American haplotypes.  相似文献   

15.
A total of 63 binary polymorphisms and 10 short tandem repeats (STRs) were genotyped on a sample of 2,344 Y chromosomes from 18 Native American, 28 Asian, and 5 European populations to investigate the origin(s) of Native American paternal lineages. All three of Greenberg's major linguistic divisions (including 342 Amerind speakers, 186 Na-Dene speakers, and 60 Aleut-Eskimo speakers) were represented in our sample of 588 Native Americans. Single-nucleotide polymorphism (SNP) analysis indicated that three major haplogroups, denoted as C, Q, and R, accounted for nearly 96% of Native American Y chromosomes. Haplogroups C and Q were deemed to represent early Native American founding Y chromosome lineages; however, most haplogroup R lineages present in Native Americans most likely came from recent admixture with Europeans. Although different phylogeographic and STR diversity patterns for the two major founding haplogroups previously led to the inference that they were carried from Asia to the Americas separately, the hypothesis of a single migration of a polymorphic founding population better fits our expanded database. Phylogenetic analyses of STR variation within haplogroups C and Q traced both lineages to a probable ancestral homeland in the vicinity of the Altai Mountains in Southwest Siberia. Divergence dates between the Altai plus North Asians versus the Native American population system ranged from 10,100 to 17,200 years for all lineages, precluding a very early entry into the Americas.  相似文献   

16.
Recent analyses of mitochondrial genomes from Native Americans have brought the overall number of recognized maternal founding lineages from just four to a current count of 15. However, because of their relative low frequency, almost nothing is known for some of these lineages. This leaves a considerable void in understanding the events that led to the colonization of the Americas following the Last Glacial Maximum (LGM). In this study, we identified and completely sequenced 14 mitochondrial DNAs belonging to one extremely rare Native American lineage known as haplogroup C4c. Its age and geographical distribution raise the possibility that C4c marked the Paleo-Indian group(s) that entered North America from Beringia through the ice-free corridor between the Laurentide and Cordilleran ice sheets. The similarities in ages andgeographical distributions for C4c and the previously analyzed X2a lineage provide support to the scenario of a dual origin for Paleo-Indians. Taking into account that C4c is deeply rooted in the Asian portion of the mtDNA phylogeny and is indubitably of Asian origin, the finding that C4c and X2a are characterized by parallel genetic histories definitively dismisses the controversial hypothesis of an Atlantic glacial entry route into North America.  相似文献   

17.

Background

Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.

Principal Findings

We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of ∼12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9–10% mtDNAs and ∼31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.

Conclusions

We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.  相似文献   

18.
Different scenarios attempting to describe the initial phases of the human dispersal from Asia into the New World have been proposed during the last two decades. However, some aspects concerning the population affinities among early and modern Asians and Native Americans remain controversial. Specifically, contradictory views based mainly on partial evidence such as skull morphology or molecular genetics have led to hypotheses such as the "Two Waves/Components" and "Single Wave" or "Out of Beringia" model, respectively. Alternatively, an integrative scenario considering both morphological and molecular variation has been proposed and named as the "Recurrent Gene Flow" hypothesis. This scenario considers a single origin for all the Native Americans, and local, within-continent evolution plus the persistence of contact among Circum-Arctic groups. Here we analyze 2D geometric morphometric data to evaluate the associations between observed craniometric distance matrix and different geographic design matrices reflecting distinct scenarios for the peopling of the New World using basic and partial Mantel tests. Additionally, we calculated the rate of morphological differentiation between Early and Late American samples under the different settlement scenarios and compared our findings to the predicted morphological differentiation under neutral conditions. Also, we incorporated in our analyses some variants of the classical Single Wave and Two Waves models as well as the Recurrent Gene Flow model. Our results suggest a better explanatory performance of the Recurrent Gene Flow model, and provide additional insights concerning affinities among Asian and Native American Circum-Arctic groups.  相似文献   

19.
The Altai region of southern Siberia has played a critical role in the peopling of northern Asia as an entry point into Siberia and a possible homeland for ancestral Native Americans. It has an old and rich history because humans have inhabited this area since the Paleolithic. Today, the Altai region is home to numerous Turkic-speaking ethnic groups, which have been divided into northern and southern clusters based on linguistic, cultural, and anthropological traits. To untangle Altaian genetic histories, we analyzed mtDNA and Y chromosome variation in northern and southern Altaian populations. All mtDNAs were assayed by PCR-RFLP analysis and control region sequencing, and the nonrecombining portion of the Y chromosome was scored for more than 100 biallelic markers and 17 Y-STRs. Based on these data, we noted differences in the origin and population history of Altaian ethnic groups, with northern Altaians appearing more like Yeniseian, Ugric, and Samoyedic speakers to the north, and southern Altaians having greater affinities to other Turkic speaking populations of southern Siberia and Central Asia. Moreover, high-resolution analysis of Y chromosome haplogroup Q has allowed us to reshape the phylogeny of this branch, making connections between populations of the New World and Old World more apparent and demonstrating that southern Altaians and Native Americans share a recent common ancestor. These results greatly enhance our understanding of the peopling of Siberia and the Americas.  相似文献   

20.
A decade ago, the first reviews of the collective mitochondrial DNA (mtDNA) data from Native Americans concluded that the Americas were peopled through multiple migrations from different Asian populations beginning more than 30,000 years ago. 1 These reports confirmed multiple‐wave hypotheses suggested earlier by other sources and rejected the dominant Clovis‐first archeological paradigm. Consequently, it appeared that molecular biology had made a significant contribution to the study of American prehistory. As Cann 2 comments, the Americas held the greatest promise for genetics to help solve some of the mysteries of prehistoric populations. In particular, mtDNA appeared to offer real potential as a means of better understanding ancient population movements. A decade later, none of the early conclusions remain unequivocal. Nevertheless, in its maturity, the study of Native American mtDNA has produced a volume of reports that still illuminate the nature and timing of the first peopling and postcolonization population movements within the New World.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号