首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose infusion into rats causes skeletal muscle insulin resistance that initially occurs without changes in insulin signaling. The aim of the current study was to prolong glucose infusion and evaluate other events associated with the transition to muscle insulin resistance. Hyperglycemia was produced in rats by glucose infusion for 3, 5 and 8 h. The rate of infusion required to maintain hyperglycemia was reduced at 5 and 8 h. Glucose uptake into red quadriceps (RQ) and its incorporation into glycogen decreased between 3 and 5 h, further decreasing at 8 h. The earliest observed change in RQ was decreased AMPKα2 activity associated with large increases in muscle glycogen content at 3 h. Activation of the mTOR pathway occurred at 5 h. Akt phosphorylation (Ser473) was decreased at 8 h compared to 3 and 5, although no decrease in phosphorylation of downstream GSK-3β (Ser9) and AS160 (Thr642) was observed. White quadriceps showed a similar but delayed pattern, with insulin resistance developing by 8 h and decreased AMPKα2 activity at 5 h. These results indicate that, in the presence of a nutrient overload, alterations in muscle insulin signaling occur, but after insulin resistance develops and appropriate changes in energy/nutrient sensing pathways occur.  相似文献   

2.
Inducible nitric-oxide synthase (iNOS), a major mediator of inflammation, plays an important role in obesity-induced insulin resistance. Inhibition of iNOS by gene disruption or pharmacological inhibitors reverses or ameliorates obesity-induced insulin resistance in skeletal muscle and liver in mice. It is unknown, however, whether increased expression of iNOS is sufficient to cause insulin resistance in vivo. To address this issue, we generated liver-specific iNOS transgenic (L-iNOS-Tg) mice, where expression of the transgene, iNOS, is regulated under mouse albumin promoter. L-iNOS-Tg mice exhibited mild hyperglycemia, hyperinsulinemia, insulin resistance, and impaired insulin-induced suppression of hepatic glucose output, as compared with wild type (WT) littermates. Insulin-stimulated phosphorylation of insulin receptor substrate-1 (IRS-1) and -2, and Akt was significantly attenuated in liver, but not in skeletal muscle, of L-iNOS-Tg mice relative to WT mice without changes in insulin receptor phosphorylation. Moreover, liver-specific iNOS expression abrogated insulin-stimulated phosphorylation of glycogen synthase kinase-3β, forkhead box O1, and mTOR (mammalian target of rapamycin), endogenous substrates of Akt, along with increased S-nitrosylation of Akt relative to WT mice. However, the expression of insulin receptor, IRS-1, IRS-2, Akt, glycogen synthase kinase-3β, forkhead box O1, protein-tyrosine phosphatase-1B, PTEN (phosphatase and tensin homolog), and p85 phosphatidylinositol 3-kinase was not altered by iNOS transgene. Hyperglycemia was associated with elevated glycogen phosphorylase activity and decreased glycogen synthase activity in the liver of L-iNOS-Tg mice, whereas phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and proliferator-activated receptor γ coactivator-1α expression were not altered. These results clearly indicate that selective expression of iNOS in liver causes hepatic insulin resistance along with deranged insulin signaling, leading to hyperglycemia and hyperinsulinemia. Our data highlight a critical role for iNOS in the development of hepatic insulin resistance and hyperglycemia.  相似文献   

3.
During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast.  相似文献   

4.
《Endocrine practice》2007,13(3):283-290
ObjectiveTo determine the underlying mechanism for the severe and transient β-cell dysfunction and impaired insulin action in obese African American patients with ketosis-prone diabetes.MethodsThe effect of sustained hyperglycemia (glucotoxicity) and increased free fatty acids (lipotoxicity) on β-cell function was assessed by changes in insulin secretion during a 20-hour glucose (200 mg/m2 per minute) and a 48-hour Intralipid (40 mL/h) infusion, respectively. Insulin-activated signaling pathways and pattern of Akt-1 and Akt-2 expression and insulin-stimulated phosphorylation were analyzed in skeletal muscle biopsy specimens. Studies were performed in an obese African American woman within 48 hours after resolution of diabetic ketoacidosis and 1 week after discontinuation of insulin treatment.ResultsDextrose infusion rapidly increased C-pep-tide levels from a baseline of 3.2 ng/mL to a mean of 7.1 ± 0.5 ng/mL during the first 8 hours of infusion; thereafter, C-peptide levels progressively declined. Lipid infusion was not associated with any deleterious effect on insulin and C-peptide secretion. Initial in vitro stimulation of muscle tissue with insulin resulted in a substantial and selectively decreased Akt-2 expression and insulin-stimulated phosphorylation on the serine residue. Improved metabolic control resulted in 70% greater Akt expression at near-normoglycemic remission in comparison with the period of hyperglycemia.ConclusionHyperglycemia, but not increased free fatty acid levels, led to progressive β-cell dysfunction and impaired insulin secretion. Hyperglycemia was also associated with diminished skeletal muscle Akt expression and phosphorylation in an African American woman with ketosis-prone diabetes, and this defect improved notably with aggressive insulin therapy. These results indicate the importance of glucose toxicity in the pathogenesis of keto-sis-prone diabetes in obese African American patients. (Endocr Pract. 2007;13:283-290)  相似文献   

5.
Oxidative stress can contribute to the multifactorial etiology of whole body and skeletal muscle insulin resistance. No investigation has directly assessed the effect of an in vitro oxidant stress on insulin action in intact mammalian skeletal muscle. Therefore, the purpose of the present study was to characterize the molecular actions of a low-grade oxidant stress (H(2)O(2)) on insulin signaling and glucose transport in isolated skeletal muscle of lean Zucker rats. Soleus strips were incubated in 8 mM glucose for 2 h in the absence or presence of 100 mU/ml glucose oxidase, which produces H(2)O(2) at approximately 90 microM. By itself, H(2)O(2) significantly (P < 0.05) activated basal glucose transport activity, net glycogen synthesis, and glycogen synthase activity and increased phosphorylation of insulin receptor (Tyr), Akt (Ser(473)), and GSK-3beta (Ser(9)). In contrast, this oxidant stress significantly inhibited the expected insulin-mediated enhancements in glucose transport, glycogen synthesis, and these signaling factors and allowed GSK-3beta to retain a more active form. In the presence of CT-98014, a selective GSK-3 inhibitor, the ability of insulin to stimulate glucose transport and glycogen synthesis during exposure to this oxidant stress was enhanced by 20% and 39% (P < 0.05), respectively, and insulin stimulation of the phosphorylation of insulin receptor, Akt, and GSK-3 was significantly increased by 36-58% (P < 0.05). These results indicate that an oxidant stress can directly and rapidly induce substantial insulin resistance of skeletal muscle insulin signaling, glucose transport, and glycogen synthesis. Moreover, a small, but significant, portion of this oxidative stress-induced insulin resistance is associated with a reduced insulin-mediated suppression of the active form of GSK-3beta.  相似文献   

6.
Role of glycogen content in insulin resistance in human muscle cells   总被引:1,自引:0,他引:1  
We have used primary human muscle cell cultures to investigate the role of glycogen loading in cellular insulin resistance. Insulin pre-treatment for 2 h markedly impaired insulin signaling, as assessed by protein kinase B (PKB) phosphorylation. In contrast, insulin-dependent glycogen synthesis, glycogen synthase (GS) activation, and GS sites 3 de-phosphorylation were impaired only after 5 h of insulin pre-treatment, whereas 2-deoxyglucose transport was only decreased after 18 h pre-treatment. Insulin-resistant glycogen synthesis was associated closely with maximal glycogen loading. Both glucose limitation and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) treatment during insulin pre-treatment curtailed glycogen accumulation, and concomitantly restored insulin-sensitive glycogen synthesis and GS activation, although GS de-phosphorylation and PKB phosphorylation remained impaired. Conversely, glycogen super-compensation diminished insulin-sensitive glycogen synthesis and GS activity. Insulin acutely promoted GS translocation to particulate subcellular fractions; this was abolished by insulin pre-treatment, as was GS dephosphorylation therein. Limiting glycogen accumulation during insulin pre-treatment re-instated GS dephosphorylation in particulate fractions, whereas glycogen super-compensation prevented insulin-stimulated GS translocation and dephosphorylation. Our data suggest that diminished insulin signaling alone is insufficient to impair glucose disposal, and indicate a role for glycogen accumulation in inducing insulin resistance in human muscle cells.  相似文献   

7.
Elevation of plasma lactate levels induces peripheral insulin resistance, but the underlying mechanisms are unclear. We examined whether lactate infusion in rats suppresses glycolysis preceding insulin resistance and whether lactate-induced insulin resistance is accompanied by altered insulin signaling and/or insulin-stimulated glucose transport in skeletal muscle. Hyperinsulinemic euglycemic clamps were conducted for 6 h in conscious, overnight-fasted rats with or without lactate infusion (120 micromol x kg(-1) x min(-1)) during the final 3.5 h. Lactate infusion increased plasma lactate levels about fourfold. The elevation of plasma lactate had rapid effects to suppress insulin-stimulated glycolysis, which clearly preceded its effect to decrease insulin-stimulated glucose uptake. Both submaximal and maximal insulin-stimulated glucose transport decreased 25-30% (P < 0.05) in soleus but not in epitrochlearis muscles of lactate-infused rats. Lactate infusion did not alter insulin's ability to phosphorylate the insulin receptor, the insulin receptor substrate (IRS)-1, or IRS-2 but decreased insulin's ability to stimulate IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activities and Akt/protein kinase B activity by 47, 75, and 55%, respectively (P < 0.05 for all). In conclusion, elevation of plasma lactate suppressed glycolysis before its effect on insulin-stimulated glucose uptake, consistent with the hypothesis that suppression of glucose metabolism could precede and cause insulin resistance. In addition, lactate-induced insulin resistance was associated with impaired insulin signaling and decreased insulin-stimulated glucose transport in skeletal muscle.  相似文献   

8.
Glucose infusion in rats for 1-4 days results in insulin resistance and increased triglyceride, whole tissue long-chain fatty acyl-CoA (LCA-CoA), and malonyl-CoA content in red skeletal muscle. Despite this, the relation between these alterations and the onset of insulin resistance has not been defined. We aimed to 1) identify whether the changes in these lipids and of diacylglycerol (DAG) precede or accompany the onset of insulin resistance in glucose-infused rats, 2) determine whether the insulin resistance is associated with alterations in AMP-activated protein kinase (AMPK), and 3) assess whether similar changes occur in liver and in muscle. Hyperglycemia (17-18 mM) was maintained by intravenous glucose infusion in rats for 3 or 5 h; then euglycemia was restored and a 2-h hyperinsulinemic clamp was performed. Significant (P < 0.01) muscle and liver insulin resistance first appeared in red quadriceps and liver of the glucose-infused group at 5 h and was associated with a twofold increase in DAG and malonyl-CoA content and a 50% decrease in AMPK and acetyl-CoA carboxylase (ACC) phosphorylation and AMPK activity. White quadriceps showed qualitatively similar changes but without decreases in AMPK or ACC phosphorylation. Triglyceride mass was increased at 5 h only in liver, and whole tissue LCA-CoA content was not increased in liver or either muscle type. We conclude that the onset of insulin resistance induced by glucose oversupply correlates temporally with increases in malonyl-CoA and DAG content in all three tissues and with reduced AMPK phosphorylation and activity in red muscle and liver. In contrast, it was not associated with increased whole tissue LCA-CoA content in any tissue or triglyceride in muscle, although both are observed at later times.  相似文献   

9.
Carbohydrate metabolism during intense exercise when hyperglycemic   总被引:2,自引:0,他引:2  
The effects of hyperglycemia on muscle glycogen use and carbohydrate metabolism were evaluated in eight well-trained cyclists (average maximal O2 consumption 4.5 +/- 0.1 l/min) during 2 h of exercise at 73 +/- 2% of maximal O2 consumption. During the control trial (CT), plasma glucose concentration averaged 4.2 +/- 0.2 mM and plasma insulin remained between 6 and 9 microU/ml. During the hyperglycemic trial (HT), 20 g of glucose were infused intravenously after 8 min of exercise, after which a variable-rate infusion of 18% glucose was used to maintain plasma glucose at 10.8 +/- 0.4 mM throughout exercise. Plasma insulin remained low during the 1st h of HT, yet it increased significantly (to 16-24 microU/ml; P less than 0.05) during the 2nd h. The amount of muscle glycogen utilized in the vastus lateralis during exercise was similar during HT and CT (75 +/- 8 and 76 +/- 7 mmol/kg, respectively). As exercise duration increased, carbohydrate oxidation declined during CT but increased during HT. Consequently, after 2 h of exercise, carbohydrate oxidation was 40% higher during HT than during CT (P less than 0.01). The rate of glucose infusion required to maintain hyperglycemia (10 mM) remained very stable at 1.6 +/- 0.1 g/min during the 1st h. However, during the 2nd h of exercise, the rate of glucose infusion increased (P less than 0.01) to 2.6 +/- 0.1 g/min (37 mg.kg body wt-1.min-1) during the final 20 min of exercise. We conclude that hyperglycemia (i.e., 10 mM) in humans does not alter muscle glycogen use during 2 h of intense cycling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Effects of acute exercise and detraining on insulin action in trained men   总被引:8,自引:0,他引:8  
Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] underwent sequential hyperinsulinemic euglycemic clamps on three occasions: 1) in the "habitual state" 15 h after the last training bout (C), 2) after 60 min of bicycle exercise at 72 +/- 3% of VO2max performed in the habitual state (E), and 3) 5 days after the last ordinary training session (detrained, DT). Sensitivity for insulin-mediated whole-body glucose uptake was not affected by acute exercise [insulin concentrations eliciting 50% of maximal insulin-mediated glucose uptake being 44 +/- 2 (C) vs. 46 +/- 3 (E) microU/ml] but was decreased after detraining (54 +/- 2 microU/ml, P less than 0.05) to levels comparable to those found in untrained subjects [Am. J. Physiol. 254 (Endocrinol. Metab. 17): E248-E259, 1988]. Near-maximal insulin-mediated glucose uptake (responsiveness) was higher than in untrained subjects and not influenced by acute exercise or detraining [13.4 +/- 1.2 (C), 12.2 +/- 0.9 (E), and 12.2 +/- 0.3 (DT) mg.min-1.kg-1]. Calculated by indirect calorimetry, the glucose-to-glycogen conversion was not influenced by E but was reduced during detraining (P less than 0.05) yet remained higher than previously found in untrained subjects (P less than 0.05). However, only on E days did muscle glycogen increase during insulin infusion. Glycogen synthase activity was increased on E and decreased on DT compared with C days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Hyperglycemia stimulates a plethora of intracellular signaling pathways within the cells of the vascular wall resulting in dysfunction-associated pathologies. Most of the studies reported so far explored the effect of rather short-time exposure of smooth muscle cells to high glucose concentrations. To mimic situation in Type 2 diabetes in which vascular wall is constantly exposed to circulating hyperglycemia, we report here the long-term (7 days) effect of high glucose concentration on human media artery smooth muscle cells. This consists in up-regulation of PTP1B protein expression, down-regulation of basal Akt phosphorylation, and elevation of basal ERK1/2 activation. Acute stimulation of cells in high glucose with insulin down-regulated PTP1B expression, slightly decreased ERK1/2 activity, and activated Akt, whereas oxidative stress up-regulated Akt and ERK1/2 phosphorylation. In conclusion, long-term high glucose and acute oxidative stress and insulin stimulation imbalance the expression of activated kinases Akt and ERK1/2 and of dephosphorylating PTP1B in the insulin signaling pathway.  相似文献   

12.
Insulin resistance of skeletal muscle is a major defect in obesity and type 2 diabetes. Insulin resistance has been associated with a chronic subclinical inflammatory state in epidemiological studies and specifically with activation of the inhibitor kappaB kinase (IkappaBK)-nuclear factor-kappaB (NF-kappaB) pathway. However, it is unclear whether this pathway plays a role in mediating insulin resistance in muscle in vivo. We separately overexpressed the p65 subunit of NF-kappaB and IkappaBKbeta in single muscles of rats using in vivo electrotransfer and compared the effects after 1 wk vs. paired contralateral control muscles. A 64% increase in p65 protein (P < 0.001) was sufficient to cause muscle fiber atrophy but had no effect on glucose disposal or glycogen storage in muscle under hyperinsulinemic-euglycemic clamp conditions. Similarly, a 650% increase in IkappaBKbeta expression (P < 0.001) caused a significant reduction in IkappaB protein but also had no effect on clamp glucose disposal after lipid infusion. In fact, IkappaBKbeta overexpression in particular caused increases in activating tyrosine phosphorylation of insulin receptor substrate-1 (24%; P = 0.02) and serine phosphorylation of Akt (23%; P < 0.001), implying a moderate increase in flux through the insulin signaling cascade. Interestingly, p65 overexpression resulted in a negative feedback reduction of 36% in Toll-like receptor (TLR)-2 (P = 0.03) but not TLR-4 mRNA. In conclusion, activation of the IkappaBKbeta-NF-kappaB pathway in muscle does not seem to be an important local mediator of insulin resistance.  相似文献   

13.
Prolonged growth hormone (GH) excess is known to be associated with insulin resistance, but the underlying mechanisms remain unknown. The aim of this study was to assess the impact of GH on insulin-stimulated glucose metabolism and insulin signaling in human skeletal muscle. In a cross-over design, eight healthy male subjects (age 26.0 +/- 0.8 yr and body mass index 24.1 +/- 0.5 kg/m2) were infused for 360 min with either GH (Norditropin, 45 ng.kg(-1).min(-1)) or saline. During the final 180 min of the infusion, a hyperinsulinemic euglycemic clamp was performed (insulin infusion rate: 1.2 mU.kg(-1).min(-1)). Muscle biopsies from vastus lateralis were taken before GH/saline administration and after 60 min of hyperinsulinemia. GLUT4 content and insulin signaling, as assessed by insulin receptor substrate (IRS)-1-associated phosphatidylinositol 3-kinase and Akt activity were determined. GH levels increased to a mean (+/-SE) level of 20.0 +/- 2.3 vs. 0.5 +/- 0.2 microg/l after saline infusion (P < 0.01). During GH infusion, the glucose infusion rate during hyperinsulinemia was reduced by 38% (P < 0.01). In both conditions, free fatty acids were markedly suppressed during hyperinsulinemia. Despite skeletal muscle insulin resistance, insulin still induced a similar approximately 3-fold rise in IRS-1-associated PI 3-kinase activity (269 +/- 105 and 311 +/- 71% compared with baseline, GH vs. saline). GH infusion did not change Akt protein expression, and insulin caused an approximately 13-fold increase in Akt activity (1,309 +/- 327 and 1,287 +/- 173%) after both GH and saline infusion. No difference in total GLUT4 content was noted (114.7 +/- 7.4 and 107.6 +/- 16.7 arbitrary units, GH vs. saline, compared with baseline). In conclusion, insulin resistance in skeletal muscle induced by short-term GH administration is not associated with detectable changes in the upstream insulin-signaling cascade or reduction in total GLUT4. Yet unknown mechanisms in insulin signaling downstream of Akt may be responsible.  相似文献   

14.
The phosphoinositide 3-kinase/Akt pathway is thought to be essential for normal insulin action and glucose metabolism in skeletal muscle and has been shown to be dysregulated in insulin resistance. However, the specific roles of and signaling pathways triggered by Akt isoforms have not been fully assessed in muscle in vivo. We overexpressed constitutively active (ca-) Akt-1 or Akt-2 constructs in muscle using in vivo electrotransfer and, after 1 wk, assessed the roles of each isoform on glucose metabolism and fiber growth. We achieved greater than 2.5-fold increases in total Ser473 phosphorylation in muscles expressing ca-Akt-1 and ca-Akt-2, respectively. Both isoforms caused hypertrophy of muscle fibers, consistent with increases in p70S6kinase phosphorylation, and a 60% increase in glycogen accumulation, although only Akt-1 increased glycogen synthase kinase-3beta phosphorylation. Akt-2, but not Akt-1, increased basal glucose uptake (by 33%, P = 0.004) and incorporation into glycogen and lipids, suggesting a specific effect on glucose transport. Consistent with this, short hairpin RNA-mediated silencing of Akt-2 caused reductions in glycogen storage and glucose uptake. Consistent with Akt-mediated insulin receptor substrate 1 (IRS-1) degradation, we observed approximately 30% reductions in IRS-1 protein in muscle overexpressing ca-Akt-1 or ca-Akt-2. Despite this, we observed no decrease in insulin-stimulated glucose uptake. Furthermore, a 68% reduction in IRS-1 levels induced using short hairpin RNAs targeting IRS-1 also did not affect glucose disposal after a glucose load. These data indicate distinct roles for Akt-1 and Akt-2 in muscle glucose metabolism and that moderate reductions in IRS-1 expression do not result in the development of insulin resistance in skeletal muscle in vivo.  相似文献   

15.
Insulin regulates the phosphorylation and activities of Akt and glycogen synthase kinase-3 (GSK3) in peripheral tissues, but in the brain it is less clear how this signaling pathway is regulated in vivo and whether it is affected by diabetes. We found that Akt and GSK3 are sensitive to glucose, because fasting decreased and glucose administration increased by severalfold the phosphorylation of Akt and GSK3 in the cerebral cortex and hippocampus of non-diabetic mice. Brain Akt and GSK3 phosphorylation also increased after streptozotocin administration (3 days), which increased blood glucose and depleted blood insulin, indicating regulation by glucose availability even with deficient insulin. Changes in Akt and GSK3 phosphorylation and activities in epididymal fat were opposite to those of brain after streptozotocin treatment. Streptozotocin-induced hyperglycemia and increased brain Akt and GSK3 phosphorylation were reversed by lowering blood glucose with insulin administration. Long term hyperglycemia also increased brain Akt and GSK3 phosphorylation, both 4 weeks after streptozotocin and in db/db insulin-resistant mice. Thus, the Akt-GSK3 signaling pathway is regulated in mouse brain in vivo in response to physiological and pathological changes in insulin and glucose.  相似文献   

16.
Although hyperglycemia is common in patients with acute myocardial infarction (MI), the underlying mechanisms are largely unknown. Insulin signaling plays a key role in the regulation of glucose homeostasis. In this study, we test the hypothesis that rapid alteration of insulin signaling pathways could be a potential contributor to acute hyperglycemia after MI. Male rats were used to produce MI by ligation of the left anterior descending coronary artery. Plasma glucose and insulin levels were significantly higher in MI rats than those in controls. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) was reduced significantly in the liver tissue of MI rats compared with controls, followed by decreased attachment of phosphatidylinositol 3-kinase (PI3K) p85 subunit with IRS1 and Akt phosphorylation. However, insulin-stimulated signaling was not altered significantly in skeletal muscle after MI. The relative mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase were slightly higher in the liver tissue of MI rats than those in controls. Rosiglitazone (ROSI) markedly restored hepatic insulin signaling, inhibited gluconeogenesis and reduced plasma glucose levels in MI rats. Insulin resistance develops rapidly in liver but not skeletal muscle after MI, which contributes to acute hyperglycemia. Therapy aimed at potentiating hepatic insulin signaling may be beneficial for MI-induced hyperglycemia.  相似文献   

17.
People living at high altitude appear to have lower blood glucose levels and decreased incidence of diabetes. Faster glucose uptake and increased insulin sensitivity are likely explanations for these findings: skeletal muscle is the largest glucose sink in the body, and its adaptation to the hypoxia of altitude may influence glucose uptake and insulin sensitivity. This study tested the hypothesis that chronic normobaric hypoxia increases insulin-stimulated glucose uptake in soleus muscles and decreases plasma glucose levels. Adult male C57BL/6J mice were kept in normoxia [fraction of inspired O? = 21% (Control)] or normobaric hypoxia [fraction of inspired O? = 10% (Hypoxia)] for 4 wk. Then blood glucose and insulin levels, in vitro muscle glucose uptake, and indexes of insulin signaling were measured. Chronic hypoxia lowered blood glucose and plasma insulin [glucose: 14.3 ± 0.65 mM in Control vs. 9.9 ± 0.83 mM in Hypoxia (P < 0.001); insulin: 1.2 ± 0.2 ng/ml in Control vs. 0.7 ± 0.1 ng/ml in Hypoxia (P < 0.05)] and increased insulin sensitivity determined by homeostatic model assessment 2 [21.5 ± 3.8 in Control vs. 39.3 ± 5.7 in Hypoxia (P < 0.03)]. There was no significant difference in basal glucose uptake in vitro in soleus muscle (1.59 ± 0.24 and 1.71 ± 0.15 μmol·g?1·h?1 in Control and Hypoxia, respectively). However, insulin-stimulated glucose uptake was 30% higher in the soleus after 4 wk of hypoxia than Control (6.24 ± 0.23 vs. 4.87 ± 0.37 μmol·g?1·h?1, P < 0.02). Muscle glycogen content was not significantly different between the two groups. Levels of glucose transporters 4 and 1, phosphoinositide 3-kinase, glycogen synthase kinase 3, protein kinase B/Akt, and AMP-activated protein kinase were not affected by chronic hypoxia. Akt phosphorylation following insulin stimulation in soleus muscle was significantly (25%) higher in Hypoxia than Control (P < 0.05). Neither glycogen synthase kinase 3 nor AMP-activated protein kinase phosphorylation changed after 4 wk of hypoxia. These results demonstrate that the adaptation of skeletal muscles to chronic hypoxia includes increased insulin-stimulated glucose uptake.  相似文献   

18.
Exposure to high concentrations of glucose and insulin results in insulin resistance of metabolic target tissues, a characteristic feature of type 2 diabetes. High glucose has also been associated with oxidative stress, and increased levels of reactive oxygen species have been proposed to cause insulin resistance. To determine whether oxidative stress contributes to insulin resistance induced by hyperglycemia in vivo, nondiabetic rats were infused with glucose for 6 h to maintain a circulating glucose concentration of 15 mM with and without coinfusion of the antioxidant N-acetylcysteine (NAC), followed by a 2-h hyperinsulinemic-euglycemic clamp. High glucose (HG) induced a significant decrease in insulin-stimulated glucose uptake [tracer-determined disappearance rate (Rd), control 41.2 +/- 1.7 vs. HG 32.4 +/- 1.9 mg. kg-1. min-1, P < 0.05], which was prevented by NAC (HG + NAC 45.9 +/- 3.5 mg. kg-1. min-1). Similar results were obtained with the antioxidant taurine. Neither NAC nor taurine alone altered Rd. HG caused a significant (5-fold) increase in soleus muscle protein carbonyl content, a marker of oxidative stress that was blocked by NAC, as well as elevated levels of malondialdehyde and 4-hydroxynonenal, markers of lipid peroxidation, which were reduced by taurine. In contrast to findings after long-term hyperglycemia, there was no membrane translocation of novel isoforms of protein kinase C in skeletal muscle after 6 h. These data support the concept that oxidative stress contributes to the pathogenesis of hyperglycemia-induced insulin resistance.  相似文献   

19.
Hyperglycemia, glucose intolerance and elevated insulin levels frequently occur in burned patients; however, the mechanism(s) for this insulin resistance has not been fully elucidated. One possible mechanism could involve alterations in the phosphorylation of serine 307 of the insulin receptor substrate-1 (IRS-1) via activation of stress kinase enzymes, including SAPK/JNK. In the present study we examined the time course of the effect of burn injury to mice on: levels of IRS-1 protein, phosphorylation of serine 307 of IRS-1, SAPK/JNK kinase levels and activity and Akt kinase activity in hind limb skeletal muscle. Burn injury produced a reduction in hind limb muscle mass 24 h after injury, and, which persisted for 168 h. At 24 h after injury, there was a dramatic ( approximately 9-fold) increase in phosphorylation of IRS-1 serine 307 followed by a more moderate elevation thereafter. Total IRS-1 protein was slightly elevated at 24 h after injury and decreased to levels below sham treated animals at the later times. Burn injury did not appear to change total SAPK/JNK protein content, however, enzyme activity was increased for 7 days after injury. Akt kinase activity was decreased in skeletal muscle following burn injury; providing a biochemical basis for burn-induced insulin resistance. These findings are consistent with the hypothesis that burn-induced insulin resistance may be related, at least in part, to alterations in the phosphorylation of key proteins in the insulin signaling cascade, including IRS-1, and that changes in stress kinases, such as SAPK/JNK produced by burn injury, may be responsible for these changes in phosphorylation.  相似文献   

20.
We examined whether acute activation of 5'-AMP-activated protein kinase (AMPK) by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) ameliorates insulin resistance in isolated rat skeletal muscle. Insulin resistance was induced in extensor digitorum longus (EDL) muscles by prolonged exposure to 1.6 mM palmitate, which inhibited insulin-stimulated glycogen synthesis to 51% of control after 5 h of incubation. Insulin-stimulated glucose transport was less affected (22% of control). The decrease in glycogen synthesis was accompanied by decreased glycogen synthase (GS) activity and increased GS phosphorylation. When including 2 mM AICAR in the last hour of the 5-h incubation with palmitate, the inhibitory effect of palmitate on insulin-stimulated glycogen synthesis and glucose transport was eliminated. This effect of AICAR was accompanied by activation of AMPK. Importantly, AMPK inhibition was able to prevent this effect. Neither treatment affected total glycogen content. However, glucose 6-phosphate was increased after inclusion of AICAR, indicating increased influx of glucose. No effect of AICAR on the inhibited insulin-stimulated GS activity or increased GS phosphorylation by palmitate could be detected. Thus the mechanism by which AMPK activation ameliorates the lipid-induced insulin resistance probably involves induction of compensatory mechanisms overriding the insulin resistance. Our results emphasize AMPK as a promising molecular target for treatment of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号