首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
Plant cells divide in two by constructing a new cell wall (cell plate) between daughter nuclei after mitosis. Golgi-derived vesicles are transported to the equator of a cytoskeletal structure called a phragmoplast, where they fuse together to form the cell plate. Orientation of new cell walls involves actindependent guidance of phragmoplasts and associated cell plates to cortical sites established prior to mitosis. Recent work has provided new insights into how actin filaments and other proteins in the phragmoplast and cell plate contribute to cytokinesis. Newly discovered mutations have identified a variety of genes required for cytokinesis or its spatial regulation.  相似文献   

3.
4.
《Molecular medicine today》1998,4(10):422-423
XVth Meeting of the European Association for Cancer Research: five natural histories of human cancerStockholm, Sweden, 15–19 August 1998  相似文献   

5.
The pattern of differentiated cell types within tissues and organs is often established by organizers, the localized sources of secreted ligands. Although the mechanisms underlying organizer function have been extensively studied, only in a few cases is it clear how an organizer ultimately controls each individual cell's fate across a field of progenitor cells. One of these cases involves the establishment of a precise pattern of cell differentiation across the embryonic epidermis in Drosophila. Here, we review several recent reports that help to elucidate the regulatory principles used to control this pattern. Because organizers are conserved, the same fundamental principles might operate in other organizers.  相似文献   

6.
7.
8.
Genetic transformation and regeneration of transgenic plants remains unfeasible for the majority of plant species. We propose that inducible expression and/or suppression of the genes that control the cell cycle and development, by altering chromatin structure and exerting epigenetic control of gene expression, might substantially improve competence for transformation and/or regeneration. Transformation efficiency was higher in cells with nuclei at the S and G2 phases, and manipulating the genes whose activation or silencing promote the G1-S transition has increased both transient and stable transformation. Controlling the cell cycle directly, using RBR and VIP1, or indirectly, through hormone regulation using IPT and ESR1, has improved rates of stable transformation. Other target genes that might promote incorporation of DNA and/or pluripotency of cells include HP1, CycD3 and CycD1. The availability of large EST databanks, complete plant-genome sequences and/or inducible gene expression systems create opportunities for testing homologous genes to increase competence of transformation and regeneration.  相似文献   

9.
10.
The HMCM [CG]CBCA experiment (Tugarinov and Kay in J Am Chem Soc 125:13868–13878, 2003) correlates methyl carbon and proton shifts to Cγ, Cβ, and Cα resonances for the purpose of resonance assignments. The relative sensitivity of the HMCM[CG]CBCA sequence experiment is compared to a divide-and-conquer approach to assess whether it is best to collect all of the methyl correlations at once, or to perform separate experiments for each correlation. A straightforward analysis shows that the divide-and-conquer approach is intrinsically more sensitive, and should always be used to obtain methyl-Cγ, Cβ, and Cα correlations. The improvement in signal-to-noise associated with separate experiments is illustrated by the detection of methyl-aliphatic correlations in a 65 kDa protein-DNA complex.  相似文献   

11.
Benthic cyanobacterial mats are increasing in abundance worldwide with the potential to degrade ecosystem structure and function. Understanding mat community dynamics is thus critical for predicting mat growth and proliferation and for mitigating any associated negative effects. Carbon, nitrogen, and sulfur cycling are the predominant forms of nutrient cycling discussed within the literature, while metabolic cooperation and viral interactions are understudied. Although many forms of nutrient cycling in mats have been assessed, the links between niche dynamics, microbial interactions, and nutrient cycling are not well described. Here, we present an updated review on how nutrient cycling and microbial community interactions in mats are structured by resource partitioning via spatial and temporal heterogeneity and succession. We assess community interactions and nutrient cycling at both intramat and metacommunity scales. Additionally, we present ideas and recommendations for research in this area, highlighting top-down control, boundary layers, and metabolic cooperation as important future directions.  相似文献   

12.
The discovery of biomarkers for early detection and treatment for gastric cancer are two important gaps that proteomics have the potential to fill. Advancements in mass spectrometry, sample preparation and separation strategies are crucial to proteomics-based discoveries and subsequent translations from bench to bedside. A great number of studies exploiting various subproteomic approaches have emerged for higher-resolution analysis (compared with shotgun proteomics) that permit interrogation of different post-translational and subcellular compartmentalized forms of the same proteins as determinants of disease phenotypes. This is a unique and key strength of proteomics over genomics. In this review, the salient features, competitive edges and pitfalls of various subproteomic approaches are discussed. We also highlight valuable insights from several subproteomic studies that have increased our understanding of the molecular etiology of gastric cancer and the findings that led to the discovery of potential biomarkers/drug targets that were otherwise not revealed by conventional shotgun expression proteomics.  相似文献   

13.
14.
The identification of northern and southern components in different vertebrate species led researchers to accept a two‐component hypothesis for the Brazilian Atlantic forest (BAF). Nevertheless, neither a formal proposal nor a meta‐analysis to confirm this coincidence was ever made. Our main objective here was therefore to systematically test in how many vertebrate components the BAF could be divided by analysing existing empirical data. We used two approaches: (1) mapping and comparing the proposed areas of vertebrate endemism in the BAF and (2) analysing studies mentioning spatial subdivisions in distinct forest‐dependent vertebrates within the biome, by the use of panbiogeography. The four large‐scale endemism area components together with the six small‐scale panbiogeographical ones allowed the definition of three BAF greater regions, subdivided into nine vertebrate components, latitudinally and longitudinally organized. Empirical time estimates of the diversification events within the BAF were also reviewed. Diversification of these vertebrates occurred not only in the Pleistocene but also throughout the Miocene. Our results confirm the BAF's complex history, both in space and time. We propose that future research should be small‐scale and focused in the vertebrate components identified herein. Given the BAF's heterogeneity, studying via sections will be much more useful in identifying the BAF's historical biogeography. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

15.
Metagenomics: DNA sequencing of environmental samples   总被引:2,自引:0,他引:2  
Although genomics has classically focused on pure, easy-to-obtain samples, such as microbes that grow readily in culture or large animals and plants, these organisms represent only a fraction of the living or once-living organisms of interest. Many species are difficult to study in isolation because they fail to grow in laboratory culture, depend on other organisms for critical processes, or have become extinct. Methods that are based on DNA sequencing circumvent these obstacles, as DNA can be isolated directly from living or dead cells in various contexts. Such methods have led to the emergence of a new field, which is referred to as metagenomics.  相似文献   

16.
17.
The ecological success of ants has made them abundant in most environments, yet inter‐ and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non‐nestmates. Native to South America, Brachymyrmex patagonicus has recently invaded many locations worldwide, with invasive populations described as extremely large and dense. Yet, in contrast with most invasive ants, this species exhibits a multicolonial structure, whereby each colony occupies a single nest. Here, we investigated the interplay between genetic diversity, chemical recognition, and aggressive behaviors in an invasive population of B. patagonicus. We found that, in its invasive range, this species reaches a high nest density with individual colonies located every 2.5 m and that colony boundaries are maintained through aggression toward non‐nestmates. This recognition and antagonism toward non‐nestmates is mediated by chemical differentiation between colonies, as different colonies exhibit distinct chemical profiles. We highlighted that the level of aggression between colonies is correlated with their degree of genetic difference, but not their overall chemical differentiation. This may suggest that only a few chemical compounds influence nestmate recognition in this species or that weak chemical differences are sufficient to elicit aggression. Overall, this study demonstrates that invasive ant populations can reach high densities despite a multicolonial structure with strong aggression between colonies, raising questions about the factors underlying their ecological success and mitigating negative consequences of competitive interactions.  相似文献   

18.
《Nature methods》2008,5(4):275
  相似文献   

19.
Areas of life sciences research that were previously distant from each other in ideology, analysis practices and toolkits, such as microbial ecology and personalized medicine, have all embraced techniques that rely on next-generation sequencing instruments. Yet the capacity to generate the data greatly outpaces our ability to analyse it. Existing sequencing technologies are more mature and accessible than the methodologies that are available for individual researchers to move, store, analyse and present data in a fashion that is transparent and reproducible. Here we discuss currently pressing issues with analysis, interpretation, reproducibility and accessibility of these data, and we present promising solutions and venture into potential future developments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号