首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract A consortium of three bacteria was isolated from top soil through their capacity to utilise the chlorinated, aromatic herbicide mecoprop as a single growth substrate. The consortium constituted a tight association of Alcaligenes denitrificans, Pseudomonas glycinea and Pseudomonas marginalis . The culture exclusively degraded the ( R )-(+)-isomer of the herbicide while the ( S )-(−)-enantiomer remained unaffected. The mecoprop-degrading community could also degrade 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid and racemic 2-phenoxypropionic acid. Initially, no single member of the consortium was able to degrade mecoprop as a pure culture but after prolonged incubation, A. denitrificans was able to grow on the herbicide as the sole source of carbon and energy.  相似文献   

2.
The simultaneous degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2-methyl-4-chlorophenoxy)propionic acid (mecoprop) was achieved by two mixed cultures in the absence of any additional carbon or energy substrates. Mecoprop was not completely degraded by either of the two cultures, nor did addition of 2,4-D affect the degradation of mecoprop. The cultures completely degraded 2,4-D, and the degradation was uninfluenced by the addition of mecoprop. Nearly complete dechlorination of the mixture of two herbicides was achieved by both cultures, on the basis of the total amount of the two herbicides degraded. During the course of the reaction, however, the expected values of chloride were not met. Cell growth continued after the degradation of the parent substrates ceased. Although the mecoprop degradation did not continue to completion, spectral and growth data indicated that the metabolites which had accumulated during the reaction were degraded upon further incubation.  相似文献   

3.
Summary The bacterial degradation of mecoprop (2-(2-methyl-4-chlorophenoxy)propionic acid) was studied using a mixed culture under aerobic conditions. The release of chlorine from mecoprop indicated incomplete degradation (75%), which did not proceed to completion upon extended incubation. The UV absorbance initially increased and this was associated with spectral distortion of the shoulder and trough regions and a slight shift in the maximum wavelength of absorption. GC-MS analysis indicated that 4-chloro-2-methylphenol was an intermediate in the degradative pathway of mecoprop. The GC-MS data also suggested the formation of other phenolic compounds with repositioned chloro-and methylgroups.  相似文献   

4.
Twelve mecoprop-degrading bacteria were isolated from soil samples, and their genetic and phenotypic characteristics were investigated. Analysis of 16S rDNA sequences indicated that the isolates were related to members of the genus Sphingomonas. Ten different chromosomal DNA patterns were obtained by polymerase-chain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences from the 12 isolates. The isolates were found to be able to utilize the chiral herbicide mecoprop as a sole source of carbon and energy. While seven of the isolates were able to degrade both (R)- and (S)-mecoprop, four isolates exhibited enantioselective degradation of the (S)-type and one isolate could degrade only the (R)-enantiomer. All of the isolates were observed to possess plasmid DNAs. When certain plasmids were removed from isolates MP11, MP15, and MP23, those strains could no longer degrade mecoprop. This compelling result suggests that plasmid DNAs, in this case, conferred the ability to degrade the herbicide. The isolates MP13, MP15, and MP24 were identified as the same strain; however, they exhibited different plasmid profiles. This indicates that these isolates acquired different mecoprop-degradative plasmids in different soils through natural gene transfer.  相似文献   

5.
The herbicide mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid] is widely applied to corn fields in order to control broad-leaved weeds. However, it is often detected in groundwater where it can be a persistent contaminant. Two mecoprop-degrading bacterial strains were isolated from agricultural soils through their capability to degrade ( R/S )-mecoprop rapidly. 16S rDNA sequencing of the isolates demonstrated that one was closely related to the genera Alcaligenes sp. (designated CS1) and the other to Ralstonia sp. (designated CS2). Additionally, these isolates demonstrated ability to grow on other related herbicides, including 2,4- D (2,4-dichlorophenoxyacetic acid), MCPA [4-chloro-2-methyl phenoxy acetic acid] and ( R/S )-2,4-DP [2-(2,4-dichlorophenoxy)propionic acid] as sole carbon sources. tfdABC gene-specific probes derived from the 2,4- D -degrading Variovorax paradoxus TV1 were used in hybridization analyses to establish whether tfd -like genes are present in mecoprop-degrading bacteria. Hybridization analysis demonstrated that both Alcaligenes sp. CS1 and Ralstonia sp. CS2 harboured tfdA , tfdB and tfdC genes on plasmids that have approximately > 60% sequence similarity to the tfdA , tfdB and tfdC genes of V. paradoxus . It is therefore likely that tfd -like genes may be involved in the degradation of mecoprop, and we are currently investigating this further.  相似文献   

6.
Mixed bacterial cultures capable of using 2-methyl-4-chIorophenoxyacetic acid (MCPA) and 2, 4-dichlorophenoxyacetic acid (2, 4-D) as the sole source of carbon and energy were isolated from field soil treated with the herbicide (±)2-(2-methyl-4-chloro)phenoxypropionic acid (mecoprop). An enrichment technique with two aromatic compounds as sources of carbon was used. Effects of temperature and substrate concentration were studied. The mixed cultures retained their ability to degrade MCPA although the bacteria were grown for 3 months (32 successive passages) with glucose as the sole source of carbon and energy. With benzoic acid as co-substrate, one of the cultures was also able to degrade mecoprop and (±)2-(2, 4-dichloro)phenoxypropionic acid (dichlorprop). This ability was not maintained, however, over more than 10 passages.  相似文献   

7.
During seed maturation, cells from embryonic tissues stop division at different phases of the cell cycle. In maize, neither these phases nor the effect of exogenous auxin on them are known. Disinfected whole maize ( Zea mays L. Mexican commercial hybrid H30) seeds or sectioned embryonic axes were incubated in Murashige and Skoog medium, with or without 2-(2-methyl-4-chlorophenoxy)propionic acid (MCPP), a synthetic auxin. For some in vitro experiments, radioactive [3H]-thymidine was also added. After the stated incubation period, meristems of mesocotyl, primary and seminal roots from embryonic axes were dissected, fixed, and analyzed under a microscope. The percentage of mitotic indices was recorded. In the labeling experiments, labeled and non-labeled percentage of mitotic figures (MI %) were determined. It was found that cell division is a programmed event in the meristematic tissues of maize embryonic axes. Populations of cells entering cell division were obseved during the germination process. The mesocotyl was the first tissue to divide, followed by seminal and primary roots.
Meristematic cells from dry embryos are arrested during the G2 and G1 phases of the cell cycle. MCPP has a differential effect, stimulating G2 cells to enter cell division. It is concluded that MCPP might regulate the cell cycle at specific points.  相似文献   

8.
Seven analogs of methyl-2 [chloro-4' benzoyl)-4 phenoxy]-2 propionic acid, (LF 153) have been tested for their effects on respiration and phosphorylation of rat liver mitochondria suspensions. They differ from one another by the sort of binding between both aromatic cycle as well as by the nature and position of the halogenated substitutions and alpha methylation in the propionic chain. All the compounds which have been tested acted as inhibitors of the electron transport chain and uncouplers of phosphorylations.  相似文献   

9.
Bacterial community structure and diversity of Tunisian agricultural soil treated with different amounts of municipal solid waste compost (MSWC) and other fertilizers were studied using DGGE and ARISA fingerprinting methods. Sequence analysis of dominant DGGE bands revealed the presence of three major clusters, Cytophaga/Flexibacter/Bacteroides (CFB) group, Proteobacteria and Acidobacteria group. Using ARISA profiles, dominant populations were assigned to low and high GC Gram positive bacteria, Cyanobacteria, Spirochetes and Cytophagales. The two methods revealed the absence of significant bacterial community shifts related to the different MSWC applications. Moreover, indigenous bacterial population of the used loam-clayey soil was observed to limit proliferation and survival of Proteobacteria, initially dominant in MSWC and farmyard manure. Effectiveness of the two methods for soil bacterial community studying was shown. While DGGE was more accurate for bacterial identification, ARISA was more practical for handling and rapid estimation of dominant bacteria.  相似文献   

10.
The industrial production of olive oil is accompanied by the accumulation of large quantities of by-products from the olive milling industry that are commonly dispersed as fertilisers, which are nowadays suspected to have potential toxic effects on is omicroflora. The aim of this work has been the investigation of the genetic diversity of bacterial communities present in soil treated with olive husks focusing on the dinitrogen-fixing bacteria.nifH genes were amplified from total soil DNA using universal primers, cloned and typed by restriction analysis and sequencing of representative haplotypes. On the same samples, DGGE analysis on amplified 16S rDNA was performed aiming at monitoring modifications in the total community pattern. Results showed a high genetic diversity ofnifH genes within the community, which was well in agreement with the total community profiles obtained by DGGE on 16SrDNA. Most of thenifH gene fragments (19 out of 32) were found to be similar to sequences related with clostridia.  相似文献   

11.
C Zipper  K Nickel  W Angst    H P Kohler 《Applied microbiology》1996,62(12):4318-4322
Sphingomonas herbicidovorans MH (previously designated Flavobacterium sp. strain MH) was able to utilize the chiral herbicide (RS)-2-(4-chloro-2-methylphenoxy)propionic acid (mecoprop) as the sole carbon and energy source. When strain MH was offered racemic mecoprop as the growth substrate, it could degrade both the (R) and the (S) enantiomer to completion, as shown by biomass formation, substrate consumption, and stoichiometric chloride release. However, the (S) enantiomer disappeared much faster from the culture medium than the (R) enantiomer. These results suggest the involvement of specific enzymes for the degradation of each enantiomer. This view was substantiated by the fact that resting cells of strain MH grown on (S)-mecoprop were able to degrade the (S) but not the (R) enantiomer of mecoprop. Accordingly, resting cells of strain MH grown on (R)-mecoprop preferentially metabolized the (R) enantiomer. Nevertheless, such cells could transform (S)-mecoprop at low rates. Oxygen uptake rates with resting cells confirmed the above view, as oxygen consumption was strongly dependent on the growth substrate. Cells grown on (R)-mecoprop showed oxygen uptake rates more than two times higher upon incubation with the (R) than upon incubation with the (S) enantiomer and vice versa.  相似文献   

12.
Zhou  Hai-Yan  Li  Yi-Zuo  Jiang  Rui  Hu  Hai-Feng  Wang  Yuan-Shan  Liu  Zhi-Qiang  Xue  Ya-Ping  Zheng  Yu-Guo 《Bioprocess and biosystems engineering》2019,42(10):1573-1582
Bioprocess and Biosystems Engineering - R-2-(4-hydroxyphenoxy)propionic acid (R-HPPA) is a key intermediate of the enantiomerically pure phenoxypropionic acid herbicides. R-HPPA could be...  相似文献   

13.
We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid binding (IC(50) = 3.6 microM), and potent AMPA receptor agonist activity on cortical neurons (EC(50) = 0.25 microM), whereas (R)-ACPA was essentially inactive. Like (S)-ACPA, (S)-demethyl-ACPA displayed high AMPA receptor affinity (IC(50) = 0.039 microM), but was found to be a relatively weak AMPA receptor agonist (EC(50) = 12 microM). The stereoselectivity observed for demethyl-ACPA was high when based on AMPA receptor affinity (eudismic ratio = 250), but low when based on electrophysiological activity (eudismic ratio = 10). (R)-Demethyl-ACPA also possessed a weak NMDA receptor antagonist activity (IC(50) = 220 microM). Among the enantiomers tested, only (S)-demethyl-ACPA showed activity at metabotropic receptors, being a weak antagonist at the mGlu(2) receptor subtype (K(B) = 148 microM).  相似文献   

14.
2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid herbicide and subject to aerobic microbial degradation. Earthworms stimulate both growth and activity of MCPA-degrading bacteria in soil. Thus, active MCPA degraders in soil and drilosphere (i.e. burrow walls, gut content and cast) were assessed by 16S rRNA stable isotope probing in soil columns under experimental conditions designed to minimize laboratory incubation biases. Agriculturally relevant concentrations of [(13) C]MCPA (20 μg g(dw) (-1)) were degraded in soil within 23 and 27 days in the presence and absence of earthworms respectively. Total 16S rRNA analysis revealed 73 operational taxonomic units indicative of active Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia in soil and drilosphere derived material. Seven operational taxonomic units indicative of Alpha-, Beta-, Gammaproteobacteria and Firmicutes consumed MCPA-[(13) C]. Dominant consumers of MCPA-[(13) C] were Alphaproteobacteria (Sphingomonadaceae and Bradyrhizobiaceae) in soil and drilosphere. Beta- (Comamonadaceae) and Gammaproteobacteria (Xanthomonadaceae) were also important MCPA-[(13) C] consumers in burrow walls only, indicating that earthworms favour betaproteobacterial MCPA degraders. In oxic microcosms with bulk soil, burrow walls and cast, 20 and 300-400 μg g(dw) (-1) [(13) C]MCPA were consumed within 24 h and 20 days respectively. Gut contents did not facilitate the degradation of [(13) C]MCPA. Sphingomonadaceae dominated MCPA-[(13) C] consumers in bulk soil and burrow wall microcosms, while Beta- and Gammaproteobacteria (Burkholderiacea, Comamonadaceae, Oxalobacteraceae and Xanthomonadaceae) dominated MCPA-[(13) C] consumers in microcosms of cast, indicating that the latter taxa are prone to respond to MCPA in cast. The collective data indicated that Alphaproteobacteria are major MCPA degraders in soil and drilosphere.  相似文献   

15.
Summary A non-support bioreactor, a novel column reactor packed with a free non-supported enzyme was constructed by applying the insolubility of the enzyme in organic solvents. Stereoselective esterification of 2-(4-chlorophenoxy)propanoic acid by lipase OF 360 from Candida cylindracea with n-tetradecanol was selected as a model reaction. Non-supported lipase revealed threefold higher activity than Celite-adsorbed lipase by maintaining high stereoselectivity in a batch reaction. In continuous operation, a non-support bioreactor produced the ester with fourfold higher productivity to that of a column reactor packed with Celite-adsorbed lipase (an adsorbed bioreactor). However, the optical purity of the remaining (S)-acid was low even when the conversion ration was kept at approximately 50%. Lipase recovered from the non-support bioreactor after continuous operation retained the original stereoselectivity in a batch reaction. Therefore, semi-continuous operation was conducted by recycling the substrate solution at a high flow rate. The non-support reactor showed high stereoselectivity and ten times the productivity compared with the adsorbed bioreactor. The reason for this high performance is discussed. Offprint requests to: A. Tanaka  相似文献   

16.
Summary Long-term continuous optical resolution of 2-(4-chlorophenoxy)propanoic acid was carried out by stereoselective esterification with Celite-adsorbed lipase OF 360 from Candida cylindracea using n-tetradecanol as the second substrate in organic solvent systems. The water content of the Celite-adsorbed lipase affected productivity, 1.0 l water·mg lipase–1 being optimal for preparation of the adsorbed lipase. Water-saturated carbon tetrachloride-isooctane (8:2, v/v) was found to be an excellent organic solvent for the continuous operation. The particle size of Celite had no effect on productivity. Under optimized conditions, the (R)-enantiomer of the acid was continuously esterified with high stereoselectivity in a packed-bed column reactor for 34 days. Furthermore, it was found that treatment of the reactor with acetone made it possible to restore productivity and extend the period of continuous operation for further 29 days. Offprint requests to: A. Tanaka  相似文献   

17.
18.
The 2,4-dichlorophenoxyacetic acid (2,4-D) degrading pseudomonad, Pseudomonas cepacia DBO1(pRO101), was inoculated at approximately 107 CFU/g into sterile and non-sterile soil amended with 0, 5 or 500 ppm 2,4-D and the survival of the strain was studied for a period of 44 days. In general, the strain survived best in sterile soil. When the sterile soil was amended with 2,4-D, the strain survived at a significantly higher level than in non-amended sterile soil. In non-sterile soil either non-amended or amended with 5 ppm 2,4-D the strain died out, whereas with 500 ppm 2,4-D the strain only declined one order of magnitude through the 44 days.The influence of 0,0.06, 12 and 600 ppm 2,4-D on short-term (48 h) survival of P. cepacia DBO1(pRO101) inoculated to a level of 6×104, 6×106 or 1×108 CFU/g soil was studied in non-sterile soil. Both inoculum level and 2,4-D concentration were found to have a positive influence on numbers of P. cepacia DBO1(pRO101). At 600 ppm 2,4-D growth was significant irrespective of the inoculation level, and at 12 ppm growth was stimulated at the two lowest inocula levels. P. cepacia DBO1(pRO101) was able to survive for 15 months in sterile buffers kept at room temperature. During this starvation, cells shrunk to about one third the volume of exponentially growing cells.Abbreviations AODC acridine orange direct count - CFU colony forming units - PTYG-Agar peptone, tryptone, yeast & glucose agar - TET tetracycline - LB Luria Bertani medium  相似文献   

19.
The methanotrophic community in arctic soil from the islands of Svalbard, Norway (78 degrees N) was analysed by combining group-specific PCR with PCR of the highly variable V3 region of the 16S rRNA gene and then by denaturing gradient gel electrophoresis (DGGE). Selected bands were sequenced for identification. The analyses were performed with DNA extracted directly from soil and from enrichment cultures at 10 and 20 degrees C. The two genera Methylobacter and Methylosinus were found in all localities studied. The DGGE band patterns were simple, and DNA fragments with single base differences were separated. The arctic tundra is a potential source of extensive methane emission due to climatic warming because of its large reservoirs of stored organic carbon. Higher temperatures due to climatic warming can cause increased methane production, and the abundance and activity of methane-oxidizing bacteria in the arctic soil may be important regulators for methane emission to the atmosphere.  相似文献   

20.
M. Soedarjo  M. Habte 《Plant and Soil》1993,149(2):197-203
A greenhouse investigation was undertaken to determine the influence of fresh organic matter on the formation and functioning of vesicular-arbuscular mycorrhizal symbiosis in Leucaena leucocephala grown in an acid aluminum-rich ultisol. In soil not amended with fresh organic matter or lime, plants failed to grow. Mycorrhizal infection level, mycorrhizal effectiveness measured in terms of pinnule P content of L. leucocephala leaves and dry matter yield of the legume increased with increase in fresh organic matter. Although VAM colonization level and dry matter yield of L. leucocephala were significantly higher if the test soil was limed (7.2 cmole OH) than if amended with fresh organic matter, the latter was as effective as lime in off-setting the detrimental effect of aluminum on mycorrhizal effectiveness. The lower mycorrhizal colonization level and the lower dry matter yield noted in the soil treated with fresh organic matter appears to be related to the inadequacy of Ca in the soil amended with fresh organic matter. These observations are supported by the low calcium status of soil and plant tissues in the absence of lime. It is concluded that while fresh organic matter, in appropriate amounts, could protect sensitive plants and VAM symbiosis against Al toxicity in acid soils, maximum mycorrhizal inoculation effects are not likely to be attained unless the soils are also amended with Ca.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No 3740.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号