首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to find by which mechanisms an increased availability of plasma free fatty acids (FFA) reduced carbohydrate utilization during exercise. Rats were fed high-protein medium-chain triglycerides (MCT), high-protein long-chain triglycerides (LCT), carbohydrate (CHO) or high-protein low-fat (HP) diets for 5 weeks, and liver and muscle glycogen, gluconeogenesis and FFA oxidation were studied in rested and trained runner rats. In the rested state the hepatic glycogen store was decreased by fat and protein feeding, whereas soleus muscle glycogen concentration was only affected by high-protein diets. The percentage decrease in liver and muscle glycogen stores, after running, was similar in fat-fed, high-protein and CHO-fed rats. The fact that plasma glucose did not drastically change during exercise could be explained by a stimulation of hepatic gluconeogenesis: the activity of phosphoenolpyruvate carboxykinase (PEPCK) and liver phosphoenolpyruvate (PEP) concentration increased as well as cyclic adenosine monophosphate (AMPc) while liver fructose 2,6-bisphosphate decreased and plasma FFA rose. In contrast, the stimulation of gluconeogenesis in rested HP-, MCT- and LCT-fed rats appears to be independent of cyclic AMP.  相似文献   

2.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

3.
We used beta-adrenergic receptor stimulation and blockade as a tool to study substrate metabolism during exercise. Eight moderately trained subjects cycled for 60 min at 45% of VO(2 peak) 1) during a control trial (CON); 2) while epinephrine was intravenously infused at 0.015 microg. kg(-1) x min(-1) (beta-STIM); 3) after ingesting 80 mg of propranolol (beta-BLOCK); and 4) combining beta-BLOCK with intravenous infusion of Intralipid-heparin to restore plasma fatty acid (FFA) levels (beta-BLOCK+LIPID). beta-BLOCK suppressed lipolysis (i.e., glycerol rate of appearance) and fat oxidation while elevating carbohydrate oxidation above CON (135 +/- 11 vs. 113 +/- 10 micromol x kg(-1) x min(-1); P < 0.05) primarily by increasing rate of disappearance (R(d)) of glucose (36 +/- 2 vs. 22 +/- 2 micromol x kg(-1) x min(-1); P < 0.05). Plasma FFA restoration (beta-BLOCK+LIPID) attenuated the increase in R(d) glucose by more than one-half (28 +/- 3 micromol x kg(-1) x min(-1); P < 0.05), suggesting that part of the compensatory increase in muscle glucose uptake is due to reduced energy from fatty acids. On the other hand, beta-STIM markedly increased glycogen oxidation and reduced glucose clearance and fat oxidation despite elevating plasma FFA. Therefore, reduced plasma FFA availability with beta-BLOCK increased R(d) glucose, whereas beta-STIM increased glycogen oxidation, which reduced fat oxidation and glucose clearance. In summary, compared with control exercise at 45% VO(2 peak) (CON), both beta-BLOCK and beta-STIM reduced fat and increased carbohydrate oxidation, albeit through different mechanisms.  相似文献   

4.
Every other day feeding (EOD) and exercise induce changes in cell metabolism. The aim of the present work was to know if both EOD and exercise produce similar effects on physical capacity, studying their physiological, biochemical and metabolic effects on muscle. Male OF-1 mice were fed either ad libitum (AL) or under EOD. After 18 weeks under EOD, animals were also trained by using a treadmill for another 6 weeks and then analyzed for physical activity. Both, EOD and endurance exercise increased the resistance of animals to extenuating activity and improved motor coordination. Among the groups that showed the highest performance, AL and EOD trained animals, ALT and EODT respectively, only the EODT group was able to increase glucose and triglycerides levels in plasma after extenuating exercise. No high effects on mitochondrial respiratory chain activities or protein levels neither on coenzyme Q levels were found in gastrocnemius muscle. However, exercise and EOD did increase β-oxidation activity in this muscle accompanied by increased CD36 levels in animals fed under EOD and by changes in shape and localization of mitochondria in muscle fibers. Furthermore, EOD and training decreased muscle damage after strenuous exercise. EOD also reduced the levels of lipid peroxidation in muscle. Our results indicate that EOD improves muscle performance and resistance by increasing lipid catabolism in muscle mitochondria at the same time that prevents lipid peroxidation and muscle damage.  相似文献   

5.
The effects of starvation and force-feeding on certain tissue and blood constituents were studied in the Northern pike, Esox lucius L. Starvation resulted in a reduction of liver and muscle glycogen and liver lipid. Blood glucose concentration and haematocrit were reduced, total plasma cholesterol levels were increased, while the levels of plasma free fatty acids (FFA), amio acid nitrogen and protein remained unaltered. No significant changes were observed in either muscle protein, muscle water or the response to amino acid loading during the starvation period.
The force-feeding of pike starved for 3 months resulted in liver lipid and muscle glycogen being increased to levels higher than those observed in freshly-captured fish. Liver glycogen, however, increased to values only slightly higher than those of starved animals. Furthermore, while force-feeding had little effect on plasma FFA or protein concentrations, blood glucose, plasma cholesterol and haematocrit returned to the levels found in freshlycaptured fish and those of amino acid nitrogen were higher.
The results indicate that pike are well adapted for periods of prolonged starvation and that hepatic and extra-hepatic lipid and glycogen stores serve for metabolic needs during food shortage, while body protein is conserved. The endocrine basis for these changes in the tissue and blood constituents is discussed.  相似文献   

6.
Muscle triglyceride utilization during exercise: effect of training   总被引:10,自引:0,他引:10  
The respiratory exchange ratio (RER) is lower during exercise of the same intensity in the trained compared with the untrained state, even though plasma free fatty acids (FFA) and glycerol levels are lower, suggesting reduced availability of plasma FFA. In this context, we evaluated the possibility that lipolysis of muscle triglycerides might be higher in the trained state. Nine adult male subjects performed a prolonged bout of exercise of the same absolute intensity before and after adapting to a strenuous 12-wk program of endurance exercise. The exercise test required 64% of maximum O2 uptake before training. Plasma FFA and glycerol concentrations and RER during the exercise test were lower in the trained than in the untrained state. The proportion of the caloric expenditure derived from fat, calculated from the RER, during the exercise test increased from 35% before training to 57% after training. Muscle glycogen utilization was 41% lower, whereas the decrease in quadriceps muscle triglyceride concentration was roughly twice as great (12.7 +/- 5.5 vs. 26.1 +/- 9.3 mmol/kg dry wt, P less than 0.001) in the trained state. These results suggest that the greater utilization of FFA in the trained state is fueled by increased lipolysis of muscle triglyceride.  相似文献   

7.
The effects of acute alpha 1-adrenoceptor blockade with prazosin, beta 1-adrenoceptor blockade with atenolol, and nonselective beta-adrenoceptor blockade with propranolol were compared in a placebo-controlled crossover study of the hemodynamic and metabolic responses to acute exercise 2 h after prolonged prior exercise to induce skeletal muscle glycogen depletion, enhancing the dependence on hepatic glucose output and circulating free fatty acids (FFA). Plasma catecholamines were higher during exercise after, as opposed to before, glycogen depletion and were elevated further by all three drugs. Propranolol failed to produce a significant reduction in systolic blood pressure and elevated diastolic blood pressure. Atenolol reduced systolic blood pressure and did not change diastolic blood pressure. Both beta-blockers reduced FFA levels, but only propranolol lowered plasma glucose relative to placebo during exercise after glycogen depletion. In contrast, prazosin reduced systolic and diastolic blood pressures and resulted in elevated FFA and glucose levels. The results indicate important differences in the hemodynamic effects of beta 1-selective vs. nonselective beta-blockade during exercise after skeletal muscle glycogen depletion. Furthermore they confirm the importance of beta 2-mediated hepatic glucose production in maintaining plasma glucose levels during exercise. Acute alpha 1-blockade with prazosin induces reflex elevation of catecholamines, which in the absence of blockade of hepatic beta 2-receptors produces elevation of plasma glucose. The results suggest there is little role for alpha 1-mediated hepatic glucose production during exercise in humans.  相似文献   

8.
9.
Time-dependent effects of fatty acids on skeletal muscle metabolism   总被引:4,自引:0,他引:4  
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as type 2 diabetes mellitus, obesity, and metabolic syndrome. These high levels of plasma FFA seem to play an important role for the development of insulin resistance but the mechanisms involved are not known. We demonstrated that acute exposure to FFA (1 h) in rat incubated skeletal muscle leads to an increase in the insulin-stimulated glycogen synthesis and glucose oxidation. In conditions of prolonged exposure to FFA, however, the insulin-stimulated glucose uptake and metabolism is impaired in skeletal muscle. In this review, we discuss the differences between the effects of acute and prolonged exposure to FFA on skeletal muscle glucose metabolism and the possible mechanisms involved in the FFA-induced insulin resistance.  相似文献   

10.
We have used a novel model of genetically imparted endurance exercise capacity and metabolic health to study the genetic and environmental contributions to skeletal muscle glucose and lipid metabolism. We hypothesized that metabolic abnormalities associated with low intrinsic running capacity would be ameliorated by exercise training. Selective breeding for 22 generations resulted in rat models with a fivefold difference in intrinsic aerobic capacity. Low (LCR)- and high (HCR)-capacity runners remained sedentary (SED) or underwent 6 wk of exercise training (EXT). Insulin-stimulated glucose transport, insulin signal transduction, and rates of palmitate oxidation were lower in LCR SED vs. HCR SED (P < 0.05). Decreases in glucose and lipid metabolism were associated with decreased β?-adrenergic receptor (β?-AR), and reduced expression of Nur77 target proteins that are critical regulators of muscle glucose and lipid metabolism [uncoupling protein-3 (UCP3), fatty acid transporter (FAT)/CD36; P < 0.01 and P < 0.05, respectively]. EXT reversed the impairments to glucose and lipid metabolism observed in the skeletal muscle of LCR, while increasing the expression of β?-AR, Nur77, GLUT4, UCP3, and FAT/CD36 (P < 0.05) in this tissue. However, no metabolic improvements were observed following exercise training in HCR. Our results demonstrate that metabolic impairments resulting from genetic factors (low intrinsic aerobic capacity) can be overcome by an environmental intervention (exercise training). Furthermore, we identify Nur77 as a potential mechanism for improved skeletal muscle metabolism in response to EXT.  相似文献   

11.
To understand the long-term metabolic and functional consequences of increased GLUT4 content, intracellular substrate utilization was investigated in isolated muscles of transgenic mice overexpressing GLUT4 selectively in fast-twitch skeletal muscles. Rates of glycolysis, glycogen synthesis, glucose oxidation, and free fatty acid (FFA) oxidation as well as glycogen content were assessed in isolated EDL (fast-twitch) and soleus (slow-twitch) muscles from female and male MLC-GLUT4 transgenic and control mice. In male MLC-GLUT4 EDL, increased glucose influx predominantly led to increased glycolysis. In contrast, in female MLC-GLUT4 EDL increased glycogen synthesis was observed. In both sexes, GLUT4 overexpression resulted in decreased exogenous FFA oxidation rates. The decreased rate of FFA oxidation in male MLC-GLUT4 EDL was associated with increased lipid content in liver, but not in muscle or at the whole body level. To determine how changes in substrate metabolism and insulin action may influence energy balance in an environment that encouraged physical activity, we measured voluntary training activity, body weight, and food consumption of MLC-GLUT4 and control mice in cages equipped with training wheels. We observed a small decrease in body weight of MLC-GLUT4 mice that was paradoxically accompanied by a 45% increase in food consumption. The results were explained by a marked fourfold increase in voluntary wheel exercise. The changes in substrate metabolism and physical activity in MLC-GLUT4 mice were not associated with dramatic changes in skeletal muscle morphology. Collectively, results of this study demonstrate the feasibility of altering muscle substrate utilization by overexpression of GLUT4. The results also suggest that as a potential treatment for type II diabetes mellitus, increased skeletal muscle GLUT4 expression may provide benefits in addition to improvement of insulin action.  相似文献   

12.
We recently observed that a 24-h fasted group of rats could run longer than an ad libitum fed control group before becoming exhausted. Because of the demonstrated importance of glycogen levels and free fatty acid availability during endurance exercise, we have investigated several parameters of carbohydrate and lipid metabolism in exercised and nonexercised rats that were either fed ad libitum or fasted for 24 h. A 24-h fast depleted liver glycogen, lowered plasma glucose concentration, decreased muscle glycogen levels, and increased free fatty acid and beta-hydroxybutyrate concentrations in plasma. During exercise the fasted group had lower plasma glucose concentration, higher plasma concentration of free fatty acids and beta-hydroxybutyrate, and a lower muscle glycogen depletion rate than did the ad libitum fed group. Since fasted rats were able to continue running even when plasma glucose had dropped to levels lower than those of fed-exhausted rats, it seems unlikely that blood glucose level, per se, is a factor in causing exhaustion. These results suggest that fasting increases fatty acid utilization during exercise and the resulting "glycogen sparing" effect may result in increased endurance.  相似文献   

13.
The effect of increasing plasma concentrations of free fatty acids on substrate utilization in muscle during exercise was investigated in 11 healthy young males. One hour of dynamic knee extension at 80% of knee-extensor maximal work capacity was performed first with one leg and then with the other leg during infusion of Intralipid and heparin. Substrate utilization was assessed from arterial and femoral venous blood sampling as well as from muscle biopsies. Intralipid infusion increased mean plasma free fatty acid concentrations from 0.54 +/- 0.08 to 1.12 +/- 0.09 (SE) mM. Thigh glucose uptake during rest, exercise, and recovery was decreased by 64, 33, and 42%, respectively, by Intralipid, whereas muscle glycogen breakdown and release of lactate, pyruvate, and citrate were unaffected. Concentrations of glucose, glucose 6-phosphate, and lactate in muscle before and at termination of exercise were unaffected by Intralipid. During exercise, net leg uptake of plasma free fatty acids was not measurably increased by Intralipid, whereas uptake of ketone bodies was. Local respiratory quotient across the leg was not changed by Intralipid (control 0.87 +/- 0.02, Intralipid 0.86 +/- 0.02). Arterial concentrations of insulin, norepinephrine, and epinephrine were similar in the two trials. It is concluded that at rest and during exercise at a moderate intensity (requiring approximately equal contributions from fat and carbohydrate metabolism), muscle carbohydrate metabolism is affected only with regard to uptake of glucose when plasma concentrations of lipid and lipid metabolites are increased. This effect may be by direct inhibition of glucose transport rather than by the classic glucose-fatty acid cycle.  相似文献   

14.
The metabolic and hormonal response to short term fasting was studied after endurance exercise training. Rats were kept running on a motor driven rodent treadmill 5 days/wk for periods up to 1 h/day for 6 wk. Trained and untrained rats were then fasted for 24 h and 48 h. Liver and muscle glycogen, blood glucose, lactate, beta OH butyrate, glycerol, plasma insulin, testosterone and corticosterone were measured in fed and fasted trained and untrained rats. 48 h fasted trained rats show a lower level of blood lactate (1.08 +/- 0.05 vs 1.33 +/- 0.08 mmol/l-1 of blood glycerol (1 +/- 0.11 vs 0.84 +/- 0.08 mmol/l-1), and of muscle glycogen. There is a significant increase in plasma corticosterone in 48 h fasted trained rats from fed values. Plasma testosterone decreases during fasting, the values are higher in trained rats. Plasma insulin decreases during fasting without any difference between the two groups. These results show higher lipolysis, and decreased glycogenolysis in trained animals during 48 h fasting. The difference between the groups in steroid hormone response could reduce neoglucogenesis and muscle proteolysis in trained animals.  相似文献   

15.
Endurance capacity and the effects of different post-exercise states on skeletal muscle glycogen have been studied in rats trained by swimming or running and in sedentary controls. Regular endurance exercise resulted in increased skeletal muscle glycogen stores. A greater depletion was observed in trained animals than in non-trained animals after a training bout or exhaustive exercise. While muscle glycogen levels did not reflect a differential training stimulus (running vs swimming), swimming as a measure of exhaustive exercise was deemed invalid because of the ability of trained swimmers to avoid stenuous exercise by an alteration of swimming pattern.  相似文献   

16.
Post-exercise ketosis is known to be suppressed by physical training and by a high carbohydrate diet. As a result it has often been presumed, but not proven, that the development of post-exercise ketosis is closely related to the glycogen content of the liver. We therefore studied the effect of 1 h of treadmill running on the blood 3-hydroxybutyrate and liver and muscle glycogen concentrations of carbohydrate-loaded trained (n = 72) and untrained rats (n = 72). Resting liver and muscle glycogen levels were 25%-30% higher in the trained than in the untrained animals. The resting 3-hydroxybutyrate concentrations of both groups of rats were very low: less than 0.08 mmol.l-1. Exercise did not significantly influence the blood 3-hydroxybutyrate concentrations of trained rats, but caused a marked post-exercise ketosis (1.40 +/- 0.40 mmol.l-1 h after exercise) in the untrained animals, the time-course of which was the approximate inverse of the changes in liver glycogen concentration. Interpreting the results in the light of similar data obtained after a normal and low carbohydrate diet it has been concluded that trained animals probably owe their relative resistance to post-exercise ketosis to their higher liver glycogen concentrations as well as to greater peripheral stores of mobilizable carbohydrate.  相似文献   

17.
2-months restriction of physical activity of dogs markedly reduced their capacity for prolonged running. The rate of exercise-induced Tre increases was significantly higher in the cage-confined dogs in comparison with controls. At the point of exhaustion blood glucose concentration and muscle glycogen content were similar in the control and cage-confined animals, in spite of the much shorter time of exercise until exhaustion in the latter. The exercise-induced increases in plasma FFA concentration were considerably lower in dogs after prolonged inactivity period in spite of the greater activation of the adrenergic system. It is concluded, that there are several factors which may contribute to the reduction of the ability of cage-confined dogs to perform prolonged physical exercise. The most important seems to be the diminished muscle glycogen content, modifications in exercise metabolism and exercise-induced hyperthermia.  相似文献   

18.
The effects of melatonin on several parameters of carbohydrate and lipid metabolism were investigated in exercised and nonexercised rats. Animals were run to exhaustion on a rodent treadmill at 24 m/min and a 12% slope. Exercise resulted in a significant hypoglycemia and increased plasma levels of lactate and beta-hydroxybutyrate, together with a significant reduction of glycogen in muscle and liver. Muscle and liver glycogen content was elevated and plasma free fatty acid decreased in nonexercised animals receiving melatonin (0.5 or 2.0 mg/kg i.p). Melatonin at 2.0 mg/kg reduced plasma lactate and increased lactate concentration in liver. When compared to untreated exercised animals glycemia and muscle and liver glycogen content were significantly higher in melatonin-treated exercised animals, while plasma and liver lactate and plasma beta-hydroxybutyrate were significantly reduced. Our data indicate that melatonin preserves glycogen stores in exercised rats through changes in carbohydrate and lipid utilization.  相似文献   

19.
Increasing plasma free fatty acids decreased the degree of glycogen depletion, and increased the citrate concentration, in slow-red (soleus) and fast-red (deep portion of vastus lateralis) muscle during exercise (approx. 50% depletion of glycogen, as against 75% in control animals). There was no effect in fast-white muscle (superficial portion of vastus lateralis). Glycogen concentration in the liver decreased by 83% in controls, but only by 23% in animals with increased free fatty acids during exercise. The decreased glycogen depletion may be partly explained by the findings that (a) plasma-insulin concentration was two- to three-fold higher in animals with increased plasma free fatty acids and (b) the exercise-induced increase in plasma glucagon was lessened by increased free fatty acids. Blood glucose was higher in the animals with increased free fatty acids after the exercise. The rats with increased plasma free fatty acids utilized approx. 50% as much carbohydrate as did the controls during the exercise.  相似文献   

20.
Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 +/- 0.6 yr; body mass index: 23.8 +/- 1.0 kg/m(2); maximal O(2) consumption: 3.85 +/- 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-alpha(2); P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号