首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased vasoconstrictor sensitivity in obstructive sleep apnea.   总被引:6,自引:0,他引:6  
We studied vasoconstrictor sensitivity and cholinergic responsiveness of the forearm vasculature in 10 male patients with obstructive sleep apnea (OSA) and 10 healthy controls. Subjects with regular medication, known arterial hypertension, diabetes mellitus, or dyslipidemia were not included in this study. Age, body mass index, blood pressure, blood glucose, serum lipids, and baseline forearm vascular conductance (derived from venous occlusion plethysmography and intra-arterial blood pressure measurement) did not differ significantly between these two groups. With use of three dosage steps each, angiotensin II and acetylcholine were successively infused into the brachial artery. During infusion of angiotensin II, mean conductance was 39.6% lower (P = 0.002) in the OSA patients compared with that in the control subjects. Vascular responsiveness to increasing dosages of acetylcholine was not significantly altered in the OSA group. These findings suggest an enhanced vasoconstrictor sensitivity in the forearm vasculature in OSA. The hypothesis that endothelial function in OSA is impaired independently of other cardiovascular risk factors is not supported by the present results.  相似文献   

2.
We determined the effects of specific carotid body chemoreceptor inhibition on the propensity for apnea during sleep. We reduced the responsiveness of the carotid body chemoreceptors using intravenous dopamine infusions during non-rapid eye movement sleep in six dogs. Then we quantified the difference in end-tidal Pco(2) (Pet(CO(2))) between eupnea and the apneic threshold, the "CO(2) reserve," by gradually reducing Pet(CO(2)) transiently with pressure support ventilation at progressively increased tidal volume until apnea occurred. Dopamine infusions decreased steady-state eupneic ventilation by 15 +/- 6%, causing a mean CO(2) retention of 3.9 +/- 1.9 mmHg and a brief period of ventilatory instability. The apneic threshold Pet(CO(2)) rose 5.1 +/- 1.9 Torr; thus the CO(2) reserve was narrowed from -3.9 +/- 0.62 Torr in control to -2.7 +/- 0.78 Torr with dopamine. This decrease in the CO(2) reserve with dopamine resulted solely from the 20.5 +/- 11.3% increase in plant gain; the slope of the ventilatory response to CO(2) below eupnea was unchanged from normal. We conclude that specific carotid chemoreceptor inhibition with dopamine increases the propensity for apnea during sleep by narrowing the CO(2) reserve below eupnea. This narrowing is due solely to an increase in plant gain as the slope of the ventilatory response to CO(2) below eupnea was unchanged from normal control. These findings have implications for the role of chemoreceptor inhibition/stimulation in the genesis of apnea and breathing periodicity during sleep.  相似文献   

3.
We investigated the effects of hypoxic ventilation on the pulmonary arterial pressure- (P) flow (Q) relationship in an intact canine preparation. Mean pulmonary P-Q coordinates were obtained during hypoxic ventilation and during ventilation with 100% O2 at normal and at increased left atrial pressure. Specifically, we tested the hypothesis that, over a wide range, changes in left atrial pressure would alter the effects of hypoxic ventilation on pulmonary P-Q characteristics. Seven dogs were studied. When left atrial pressure was normal (5 mmHg), the mean value of the extrapolated intercept (PI) of the linear P-Q relationship was 10.9 mmHg and the slope (incremental vascular resistance, IR) of the P-Q relationship was 2.2 mmHg.l-1.min. Hypoxic ventilation increased PI to 18 mmHg (P less than 0.01) but did not affect IR. Subsequently, during ventilation with 100% O2, when left atrial pressure was increased to 14 mmHg by inflation of left atrial balloon, PI increased to 18 mmHg. IR was 1.6 mmHg.l-1.min. Again, hypoxic ventilation caused an isolated change in PI. Hypoxia increased PI from 18 to 28 mmHg (P less than 0.01). As in the condition of normal left atrial pressure, hypoxic ventilation did not affect IR. We conclude that, in an anesthetized intact canine preparation, hypoxic ventilation causes an isolated increase in the extrapolated pressure intercept of the pulmonary P-Q relationship. Furthermore the effects of hypoxic ventilation on pulmonary P-Q characteristics are not affected by the resting left atrial pressure.  相似文献   

4.
5.
Distension or loading of the isolated canine left heart caused reflex tachypnea in prior studies. The object of the present effort was to explore the possibility that this depended primarily on atrial distension. Cardiopulmonary bypass perfusion and ligation of pulmonary veins were used to isolate the left-heart chambers of anesthetized dogs. Simultaneous distension of the beating left atrium and fibrillating ventricle stimulated breathing frequency (f), whereas isolated ventricular distension did not. At other times, intervals of atrial fibrillation were imposed under two different conditions: 1) while the right heart and lungs were bypassed and systemic perfusion was provided by the left ventricle using blood returned to the left atrium by pump and 2) while the ventricles fibrillated and systemic perfusion was supplied directly by the pump. Atrial fibrillation increased left atrial pressure and stimulated f in condition 1. In condition 2, f increased only if fibrillation was associated with a rise in left atrial pressure. Vagal cooling blocked the effect of fibrillation. I conclude that left atrial distension may initiate reflex tachypnea.  相似文献   

6.
7.
The diagnosis of the obstructive sleep apnea syndrome relies on polysomnography. Bilateral anterior magnetic phrenic stimulation (BAMPS) mimics the dissociation between upper airway (UA) muscles and diaphragm commands that leads to UA closure during sleep. We evaluated BAMPS as a mean to identify obstructive sleep apnea syndrome patients through the characterization of the UA dynamics in 28 consecutive awake patients (18 apneic and 10 nonapneic). Driving pressure (Pd) and instantaneous flow (V) were recorded in response to BAMPS to determine the point of flow limitation (Vimax) and of minimal flow (Vimin) and the flow-pressure relationship [Vi = (k(1) x Pd) + (k(2) x Pd(2))]. Vimax, Vimin, UA resistance at Vi(min), and the coefficient of the flow-pressure relationship (k(1)) were correlated with apnea-hypopnea index (respectively, R = -0.735, P < 0.0001; R = -0.584, P = 0.001; R = 0.474, P = 0.01; and R = -0.567, P < 0.01). Body mass index was also correlated with apnea-hypopnea index (R = 0.500, P < 0.01). Apneic patients had a lower Vimax (Vimax = 678 +/- 386 vs. 1,247 +/- 271 ml/s; P < 0.001), a lower Vimin (Vimin = 460 +/- 313 vs. 822 +/- 393 ml/s; P < 0.05) and a lower k(1) (k(1) = 162 +/- 67 vs. 272 +/- 112 ml x cmH(2)O x s(-1); P < 0.01) than nonapneic ones. Using a classification and regression tree approach, we found that a Vimax of <803 ml/s (n = 12) selected only apneic patients. When Vimax of >803 ml/s (n = 16), a k(1) of >266.7 ml. cmH(2)O x s(-1) identified only nonapneic patients (n = 5). In 11 cases, Vimax > 803 ml/s and k(1) < 266.7 ml. cmH(2)O x s(-1). These included five nonapneic and six apneic patients. We conclude that UA dynamic properties studied with BAMPS during wakefulness significantly differ between nonapneic and apneic patients.  相似文献   

8.
Twelve patients with acute myocardial infarction and radiological evidence of pulmonary oedema were observed in whom the left atrial pressure, measured indirectly as pulmonary artery end-diastolic pressure, was not critically increased (range 5-12 mm Hg with reference to sternal angle). Eight of the patients had been treated with frusemide, but only six had responded: hence in at least half of the series diuresis could not account for the anomalous finding. Six patients with low cardiac output were given infusions to expand plasma volume. Appreciable increments in mean values for cardiac index (1.6 to 2.0 1/min/m2), stroke index (18 to 23 ml/beat/m2), mean arterial pressure (65 to 86 mm Hg), and pulmonary artery end-diastolic pressure (8 to 15 mm Hg) were recorded. This group, and the remaining six patients with higher cardiac output, survived to leave hospital. Delay in radiographic clearing after a fall of left atrial pressure was a possible explanation for the relatively low pulmonary artery end-diastolic pressures, especially in the patients treated successfully with diuretics. Other mechanisms, such as alterations in pulmonary vascular permeability, might also have contributed to the syndrome. Pulmonary oedema without a critical increase in the left atrial pressure is unusual in acute myocardial infarction but the therapeutic implications are important. Withdrawal;of diuretics may be indicated, and in some cases expansion of plasma volume may lead to striking clinical improvement.  相似文献   

9.
Repetitive hypoxia followed by persistently increased ventilatory motor output is referred to as long-term facilitation (LTF). LTF is activated during sleep after repetitive hypoxia in snorers. We hypothesized that LTF is activated in obstructive sleep apnea (OSA) patients. Eleven subjects with OSA (apnea/hypopnea index = 43.6 +/- 18.7/h) were included. Every subject had a baseline polysomnographic study on the appropriate continuous positive airway pressure (CPAP). CPAP was retitrated to eliminate apnea/hypopnea but to maintain inspiratory flow limitation (sham night). Each subject was studied on 2 separate nights. These two studies are separated by 1 mo of optimal nasal CPAP treatment for a minimum of 4-6 h/night. The device was capable of covert pressure monitoring. During night 1 (N1), study subjects used nasal CPAP at suboptimal pressure to have significant air flow limitation (>60% breaths) without apneas/hypopneas. After stable sleep was reached, we induced brief isocapnic hypoxia [inspired O(2) fraction (FI(O(2))) = 8%] (3 min) followed by 5 min of room air. This sequence was repeated 10 times. Measurements were obtained during control, hypoxia, and at 5, 20, and 40 min of recovery for ventilation, timing (n = 11), and supraglottic pressure (n = 6). Upper airway resistance (Rua) was calculated at peak inspiratory flow. During the recovery period, there was no change in minute ventilation (99 +/- 8% of control), despite decreased Rua to 58 +/- 24% of control (P < 0.05). There was a reduction in the ratio of inspiratory time to total time for a breath (duty cycle) (0.5 to 0.45, P < 0.05) but no effect on inspiratory time. During night 2 (N2), the protocol of N1 was repeated. N2 revealed no changes compared with N1 during the recovery period. In conclusion, 1) reduced Rua in the recovery period indicates LTF of upper airway dilators; 2) lack of hyperpnea in the recovery period suggests that thoracic pump muscles do not demonstrate LTF; 3) we speculate that LTF may temporarily stabilize respiration in OSA patients after repeated apneas/hypopneas; and 4) nasal CPAP did not alter the ability of OSA patients to elicit LTF at the thoracic pump muscle.  相似文献   

10.
Contraction of the genioglossus (GG) has been shown to improve upper airway patency. In the present study, we evaluated responses in upper airway pressure-flow relationships during sleep to electrical stimulation (ES) of the GG in patients with obstructive sleep apnea. Five patients with chronically implanted hypoglossal nerve (HG) electrodes and nine patients with fine-wire electrodes inserted into the GG were studied. Airflow was measured at multiple levels of nasal pressure, and upper airway collapsibility was defined by the nasal pressure below which airflow ceased ["critical" pressure (Pcrit)]. ES shifted the pressure-flow relationships toward higher flow levels in all patients over the entire range of nasal pressure applied. Pcrit decreased similarly during both HG-ES and GG-ES (deltaPcrit was 3.98 +/- 2.31 and 3.18 +/- 1.70 cmH2O, respectively) without a significant change in upstream resistance. The site of collapse (velo- vs. oropharynx) did not influence the response to GG-ES. Moreover, ES-induced reductions in the apnea-hypopnea index of the HG-ES patients were associated with substantial decreases in Pcrit. Our findings imply that responses in apnea severity to HG-ES can be predicted by characterizing the patient's baseline pressure-flow relationships and response to GG-ES.  相似文献   

11.

Background

Patients with obstructive sleep apnea are reported to have a peak of sudden cardiac death at night, in contrast to patients without apnea whose peak is in the morning. We hypothesized that ventricular premature contraction (VPC) frequency would correlate with measures of apnea and sympathetic activity.

Methods

Electrocardiograms from a sleep study of 125 patients with coronary artery disease were evaluated. Patients were categorized by apnea-hypopnea index (AHI) into Moderate (AHI <15) or Severe (AHI>15) apnea groups. Sleep stages studied were Wake, S1, S2, S34, and rapid eye movement (REM). Parameters of a potent autonomically-based risk predictor for sudden cardiac death called heart rate turbulence were calculated.

Results

There were 74 Moderate and 51 Severe obstructive sleep apnea patients. VPC frequency was affected significantly by sleep stage (Wake, S2 and REM, F=5.8, p<.005) and by AHI (F=8.7, p<.005). In Severe apnea patients, VPC frequency was higher in REM than in Wake (p=.011). In contrast, patients with Moderate apnea had fewer VPCs and exhibited no sleep stage dependence (p=.19). Oxygen desaturation duration per apnea episode correlated positively with AHI (r2=.71, p<.0001), and was longer in REM than in non-REM (p<.0001). The heart rate turbulence parameter TS correlated negatively with oxygen desaturation duration in REM (r2=.06, p=.014).

Conclusions

Higher VPC frequency coupled with higher sympathetic activity caused by longer apnea episodes in REM sleep may be one reason for increased nocturnal death in apneic patients.  相似文献   

12.
Left ventricular stroke volume (LVSV) falls during obstructed inspiration in animals and normal human subjects through mechanisms that may be closely related to pleural pressure. In this study we postulated that a similar reduction in LVSV should occur in patients with obstructive sleep apnea (OSA). Daytime polysomnograms were performed in 10 patients with OSA. A noninvasive electrical impedance method was used to determine LVSV. Pleural pressure was measured by esophageal balloon. In comparison with awake values, during OSA we found reductions in LVSV, cardiac output, and heart rate of 18, 27, and 11%, respectively (P less than 0.01). We observed that systolic pleural pressure did not have a significant effect on LVSV (P greater than 0.05). However, at pleural pressures lower than 10 cmH2O below resting expiratory level, there was a linear relationship between falls in LVSV and falls in middiastolic pleural pressure (P less than 0.0001). We concluded that reduced LVSV shown in patients with OSA was significantly related to diastolic pleural pressure level. Our findings suggested reduced preload as the most likely mechanism for decreased cardiac output in OSA.  相似文献   

13.
14.
The relationship between heart rate and left atrial end-diastolic diameter (LAEDD) and left atrial systolic shortening (LASS) was investigated in 12 conscious dogs. Atrial pacing, vagal blockade, isoproterenol, and beta-adrenergic blockade were used to change heart rate and the inotropic state of the atrium. LAEDD decreased linearly as heart rate increased. LAEDD averaged 33.0 mm (+/- 0.6 mm SEM) and decreased by 3.2 mm (+/- 0.4 mm SEM) with a change in heart rate of 50 beats/min. The ratio of LASS/LAEDD decreased as LAEDD decreased with increasing heart rate, but there was less of a reduction in the ratio at the extreme levels of LAEDD change with isoproterenol and vagal blockade. Propranolol reduced LASS at any LAEDD. At lower heart rates the reduction of LASS with pacing could be corrected by returning LAEDD to near control levels with a rapid infusion of fluid. It is concluded that LASS is primarily dependent on LAEDD and the inotropic state of the atrium. At higher heart rates, though, some effect of frequency can be observed. Isoproterenol and vagal blockade (increased contractile state) reduced the dependence of LASS on LAEDD.  相似文献   

15.

Introduction

Obstructive Sleep Apnea (OSA) is a major risk factor for cardiovascular disease. The goal of this study was to demonstrate whether the use of CPAP produces significant changes in the heart rate or in the heart rate variability of patients with OSA in the first night of treatment and whether gender and obesity play a role in these differences.

Methods

Single-center transversal study including patients with severe OSA corrected with CPAP. Only patients with total correction after CPAP were included. Patients underwent two sleep studies on consecutive nights: the first night a basal study, and the second with CPAP. We also analyzed the heart rate changes and their relationship with CPAP treatment, sleep stages, sex and body mass index. Twenty-minute segments of the ECG were selected from the sleep periods of REM, no-REM and awake. Heart rate (HR) and heart rate variability (HRV) were studied by comparing the R-R interval in the different conditions. We also compared samples from the basal study and CPAP nights.

Results

39 patients (15 females, 24 males) were studied. The mean age was 50.67 years old, the mean AHI was 48.54, and mean body mass index was 33.41 kg/m2 (31.83 males, 35.95 females). Our results showed that HRV (SDNN) decreased after the use of CPAP during the first night of treatment, especially in non-REM sleep. Gender and obesity did not have any influence on our results.

Conclusions

These findings support that cardiac variability improves as an acute effect, independently of gender or weight, in the first night of CPAP use in severe OSA patients, supporting the idea of continuous use and emphasizing that noncompliance of CPAP treatment should be avoided even if it is just once.  相似文献   

16.
To investigate the contribution of the peripheral chemoreceptors to the susceptibility to posthyperventilation apnea, we evaluated the time course and magnitude of hypocapnia required to produce apnea at different levels of peripheral chemoreceptor activation produced by exposure to three levels of inspired P(O2). We measured the apneic threshold and the apnea latency in nine normal sleeping subjects in response to augmented breaths during normoxia (room air), hypoxia (arterial O2 saturation = 78-80%), and hyperoxia (inspired O2 fraction = 50-52%). Pressure support mechanical ventilation in the assist mode was employed to introduce a single or multiple numbers of consecutive, sigh-like breaths to cause apnea. The apnea latency was measured from the end inspiration of the first augmented breath to the onset of apnea. It was 12.2 +/- 1.1 s during normoxia, which was similar to the lung-to-ear circulation delay of 11.7 s in these subjects. Hypoxia shortened the apnea latency (6.3 +/- 0.8 s; P < 0.05), whereas hyperoxia prolonged it (71.5 +/- 13.8 s; P < 0.01). The apneic threshold end-tidal P(CO2) (Pet(CO2)) was defined as the Pet(CO2)) at the onset of apnea. During hypoxia, the apneic threshold Pet(CO2) was higher (38.9 +/- 1.7 Torr; P < 0.01) compared with normoxia (35.8 +/- 1.1; Torr); during hyperoxia, it was lower (33.0 +/- 0.8 Torr; P < 0.05). Furthermore, the difference between the eupneic Pet(CO2) and apneic threshold Pet(CO2) was smaller during hypoxia (3.0 +/- 1.0 Torr P < 001) and greater during hyperoxia (10.6 +/- 0.8 Torr; P < 0.05) compared with normoxia (8.0 +/- 0.6 Torr). Correspondingly, the hypocapnic ventilatory response to CO2 below the eupneic Pet(CO2) was increased by hypoxia (3.44 +/- 0.63 l.min(-1).Torr(-1); P < 0.05) and decreased by hyperoxia (0.63 +/- 0.04 l.min(-1).Torr(-1); P < 0.05) compared with normoxia (0.79 +/- 0.05 l.min(-1).Torr(-1)). These findings indicate that posthyperventilation apnea is initiated by the peripheral chemoreceptors and that the varying susceptibility to apnea during hypoxia vs. hyperoxia is influenced by the relative activity of these receptors.  相似文献   

17.
18.
The repetitive upper airway muscle atonic episodes and cardiovascular sequelae of obstructive sleep apnea (OSA) suggest dysfunction of specific neural sites that integrate afferent airway signals with autonomic and somatic outflow. We determined neural responses to the Valsalva maneuver by using functional magnetic resonance imaging. Images were collected during a baseline and three Valsalva maneuvers in 8 drug-free OSA patients and 15 controls. Multiple cortical, midbrain, pontine, and medullary regions in both groups showed intensity changes correlated to airway pressure. In OSA subjects, the left inferior parietal cortex, superior temporal gyrus, posterior insular cortex, cerebellar cortex, fastigial nucleus, and hippocampus showed attenuated signal changes compared with controls. Enhanced responses emerged in the left lateral precentral gyrus, left anterior cingulate, and superior frontal cortex of OSA patients. The anterior cingulate, cerebellar cortex, and posterior insula exhibited altered response timing patterns between control and OSA subjects. The response patterns in OSA subjects suggest deficits in particular neural pathways that normally mediate the Valsalva maneuver and compensatory actions in other structures.  相似文献   

19.
Patients with obstructive sleep apnea (OSA) have been reported to have an augmented pressor response to hypoxic rebreathing. To assess the contribution of the peripheral vasculature to this hemodynamic response, we measured heart rate, mean arterial pressure (MAP), and forearm blood flow by venous occlusion plethysmography in 13 patients with OSA and in 6 nonapneic control subjects at arterial oxygen saturations (Sa(O(2))) of 90, 85, and 80% during progressive isocapnic hypoxia. Measurements were also performed during recovery from 5 min of forearm ischemia induced with cuff occlusion. MAP increased similarly in both groups during hypoxia (mean increase at 80% Sa(O(2)): OSA patients, 9 +/- 11 mmHg; controls, 12 +/- 7 mmHg). Forearm vascular resistance, calculated from forearm blood flow and MAP, decreased in controls (mean change -37 +/- 19% at Sa(O(2)) 80%) but not in patients (mean change -4 +/- 16% at 80% Sa(O(2))). Both groups decreased forearm vascular resistance similarly after forearm ischemia (maximum change from baseline -85%). We conclude that OSA patients have an abnormal peripheral vascular response to isocapnic hypoxia.  相似文献   

20.
The influence, on left ventricular pressure, of an intensive human albumin administration, has been studied in eight open chest dogs, during a second myocardial ischemia produced by coronary occlusion. After elevation of plasmatic proteins, the systolic and telediastolic left ventricular pressure, the dP/dt and the cardiac rate are measured. Any hypotensive effect was not observed in the human albumin-perfused dogs, nor in another control groups of six animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号