首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose has been characterized from isolated cell walls of the conchocelis phases of both Porphyra umbilicalis and P. leucostricta. Evidence for cellulose II (regenerated cellulose) in Schweitzer's reagent extracts was provided by X-ray powder analysis and paper chromatography of partial hydrolyzates. The presence of cellulose in the conchocelis phase of species of Porphyra provides evidence for the continuity of cell wall composition within the Rhodophyta. Adoption of a classification scheme incorporating consolidation of all red algal orders under the single class Rhodophyceae is proposed.  相似文献   

2.
Self-assembly of plant cell walls   总被引:2,自引:1,他引:1  
The object of this paper is to define criteria for distinguishing between self-assembly and template-based assembly in plant cell walls. The example of cellulose shows that cell wall polymers biosynthesized at a membrane may retain parallel chain packing arrangements that are thermodynamically unstable and cannot be reproduced in vitro, making the experimental testing of the self-assembly hypothesis difficult. Also, natural cellulose is ordered on a number of scales of pattern, each of which may be constructed by either self- or template-based assembly independently of the rest. These conceptual problems apply equally to the self-assembly of complete cell walls and other cell wall polymers. It is suggested that the self-assembly concept should be applied only to one stage or level in the synthesis of a cell wall, and that an additional concept of parallel assembly may be useful for understanding the synthesis of some polysaccharides.  相似文献   

3.
Monocotyledons of 104 species in 52 families were divided into two groups depending on the UV fluorescence behaviour of their cell walls. The unlignified cell walls of the first group, fluoresced blue, which changed to green with increased intensity after treatment with NH3 due to the presence of bound ferulic acid. The isolated cell walls of members of the first group were shown to contain bound ferulic, p-coumaric and diferulic acids. These acids were absent from cell walls of the second group. The first group contained families of the Commelinidae of Cronquist, the Palmae (part of the Arecidae), and the Philydraceae, Pontederiaceae, and Haemodoraceae (all part of Liliidae). The other families of the latter two subclasses and those of the Alismatidae belonged to the second group.  相似文献   

4.
p-Hydroxybenzaldehyde, vanillin and syringaldehyde were released as their sodium salts from graminaceous cell walls by treatment with sodium hydroxide. Treatment of the walls with ‘cellulase’ having both cellulase and hemicellulase activity released the aldehydes in bound form apparently linked at their phenolic groups to the wall polysaccharides. These findings are discussed in relation to tests for lignin using phloroglucinol-HC1 and alkaline nitrobenzene reagents.  相似文献   

5.
6.
The permeant cationic dye safranine O is often used to measure mitochondrial membrane potential due to the dependence of both its absorption and fluorescence on mitochondrial energization, which causes its oligomerization inside mitochondria. In the present study we have used fluorescent correlation spectroscopy (FCS) to record the fluorescence changes on a micro level, i.e. under conditions permitting resolution of contributions from single particles (molecules of the dye and stained mitochondria). We have shown that the decrease in fluorescence signal from a suspension of energized mitochondria stained with a high safranine concentration (10 μM) is explained by the decrease in dye concentration in the medium in parallel with the accumulation of the dye inside the mitochondria, which results in fluorescence quenching. With 1 μM safranine O, the fluorescence rise after energization is caused by the accumulation of the dye up to a level not sufficient for full fluorescence quenching and also by the higher intensity of mitochondrial fluorescence on immersion of the dye in the hydrophobic milieu. Besides the estimation of the inner mitochondrial membrane potential, this approach also assesses the concentration of fluorescent particles. The non-monotonic dependence of the FCS parameter 1/G(τ→0) on the concentration of mitochondrial protein suggests heterogeneity of the system with respect to fluorescence of particles. An important advantage of the described method is its high sensitivity, which allows measurements with low concentrations and quantities of mitochondrial protein in samples (less than 10 μg).  相似文献   

7.
Lignins are complex phenolic heteropolymers present in xylem and sclerenchyma cell walls in tracheophytes. The occurrence of lignin-like polymers in bryophytes is controversial. In this study two polyclonal antibodies against homoguaiacyl (G) and guaiacyl/syringyl (GS) synthetic lignin-like polymers that selectively labelled lignified cell walls in tracheophytes also bound to cell walls in bryophytes, the GS antibody usually giving a stronger labelling than the G antibody. In contrast to tracheophytes, the antibody binding in liverworts and mosses was not tissue-specific. In the hornworts Megaceros flagellaris and M. fuegiensis the pseudoelaters and spores were labelled more intensely than the other cell types with the GS antibody. The cell walls in Nitella were labelled with both antibodies but no binding was observed in Coleochaete. The results suggest that the ability to incorporate G or GS moieties in cell walls is a plesiomorphy (primitive character) of the land plant clade.  相似文献   

8.
Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.  相似文献   

9.
Nagahashi  G.  Abney  G. D.  Uknalis  J. 《Protoplasma》1994,178(3-4):129-137
Summary The cortex was physically separated from the stele of corn roots. The isolated walls from cortical cells were less dense than the walls isolated from stelar cells. The cell walls from each tissue were centrifuged on a step gradient composed of 50 and 60% sucrose for 5 min at 900 g. After the short centrifugation time, the cortical cell walls banded at the 50/60% interface while the vascular tissue walls pelleted through 60% sucrose. An aliquot of vascular cell walls was then marked with cytochromec. The marked cell walls were mixed with cortical cell walls and centrifuged on a 50/60% sucrose gradient and after 5 min, the vascular tissue walls were cleanly separated from the cortical cell walls. The experiment was repeated without prior separation of tissue types with another corn variety, carrot roots grown in culture, and pea roots. A clean separation of cell wall types was achieved after homogenization of intact roots in liquid nitrogen, extrusion from a nitrogen bomb, and centrifugation in sucrose gradients.  相似文献   

10.
Two solvent systems for fully dissolving, and optionally derivatizing, finely ground plant cell wall material at room temperature are described: dimethylsulfoxide (DMSO) and tetrabutylammonium fluoride (TBAF) or N-methylimidazole (NMI). In situ acetylation produces acetylated cell walls (Ac-CWs) that are fully soluble in chloroform. Lignin structures tested remain fully intact. The dispersion of 13C-1H correlations afforded by two-dimensional (2D) nuclear magnetic resonance (NMR) experiments reveals the major lignin units, allowing the whole lignin fraction to be analyzed by high-resolution solution-state NMR methods for the first time. Non-degradative cell wall dissolution offers the potential to analyze polysaccharide components, and improve current cell wall analytical methods by using standard homogeneous solution-state chemistry.  相似文献   

11.
At the peak of its activity, the cambial zone comprises several layers of undifferentiated, apparently identical cells. In order to find criteria indicating the commitment of cambial cells either to phloem or xylem, early changes in primary wall structure and composition were looked for, using sycamore branches as experimental material. Several chemicals were employed to extract cell wall polysaccharides. Treated specimens were studied by electron microscopy after selective staining. Extracted matrix components were analysed through HPLC. Comparison of ultrastructural and biochemical results indicated that in contrast to phloem derivatives cellulose biosynthesis in xylem derivatives was delayed. Among xylem-committed cells, the very young vessels were characterized by a nearly complete lack of a cellulose skeleton and a high amount of xylose-rich hemicelluloses in their primary walls. This organization would cause the wall plasticity necessary for the cell extensive growth in diameter.  相似文献   

12.
Trans,trans-, cis,trans- and cis,cis-diferulic acids were released from cell walls of Lolium multiflorum by treatment with sodium hydroxide. The isomers were apparently bound via ester links to the structural carbohydrates of the cell walls. Sodium hydroxide treatment gave, per g of wall, 0.18 mg trans,trans-diferulic, 0.02 mg cis,trans-diferulic and a trace of cis,cis-diferulic acids compared with 5.3 mg trans-ferulic, 1.2 mg cis-ferulic, 0.78 mg trans-p-coumaric and 0.12 mg cis-p-coumaric acids. The significance of these acids in lignin biosynthesis is discussed. The effect of UV light on the trans,trans isomer and its fully silylated trimethylsilyl either derivative was also investigated.  相似文献   

13.
Jin Z  Katsumata KS  Lam TB  Iiyama K 《Biopolymers》2006,83(2):103-110
Covalent linkages between wall polysaccharides and lignin, especially linkage between cellulose and lignin were discussed by carboxymethylation technique of whole cell walls of coniferous and nonconiferous woods. Hydroxyl groups of plant cell walls polysaccharides were highly substituted, but not those of lignin by carboxymethyl groups under the used conditions, and separated into water-soluble and insoluble fractions by water extraction. Carboxymethylated wall polysaccharides linked covalently with lignin were distributed into the water-insoluble fractions. Composition of carboxymethylated sugar residues in the both fractions was analyzed quantitatively by 1H NMR spectroscopy after hydrolyzation with D2SO4 in D2O. More than half of cellulose linked covalently with lignin in coniferous wood, but only one-sixth of cellulose was involved in the linkage in nonconiferous wood. The major noncellulosic wall polysaccharides of coniferous wood also linked significantly with lignin. On the other hand, noncellulosic wall polysaccharides of nonconiferous wood were involved slightly in the covalent linkage with lignin. The situation of linkage between wall polysaccharides containing cellulose and lignin was visualized by scanning electron micrographs.  相似文献   

14.
Salicaceae have been enlarged to include a majority of the species formerly placed in the polyphyletic tropical Flacourtiaceae. Several studies have reported a peculiar and infrequently formed multilayered structure of tension wood in four of the tropical genera. Tension wood is a tissue produced by trees to restore their vertical orientation and most studies have focused on trees developing tension wood by means of cellulose‐rich, gelatinous fibres, as in Populus and Salix (Salicaceae s.s.). This study aims to determine if the multilayered structure of tension wood is an anatomical characteristic common in other Salicaceae and, if so, how its distribution correlates to phylogenetic relationships. Therefore, we studied the tension wood of 14 genera of Salicaceae and two genera of Achariaceae, one genus of Goupiaceae and one genus of Lacistemataceae, families closely related to Salicaceae or formerly placed in Flacourtiaceae. Opposite wood and tension wood were compared with light microscopy and three‐dimensional laser scanning confocal microscopy. The results indicate that a multilayered structure of tension wood is common in the family except in Salix, Populus and one of their closest relatives, Idesia polycarpa. We suggest that tension wood may be a useful anatomical character in understanding phylogenetic relationships in Salicaceae. Further investigation is still needed on the tension wood of several other putatively close relatives of Salix and Populus, in particular Bennettiodendron, Macrohasseltia and Itoa.  相似文献   

15.
16.
Chemical composition is one of the key characteristics that determines wood quality and in turn its suitability for different end products and applications. The inclusion of chemical compositional traits in forest tree improvement requires high‐throughput techniques capable of rapid, non‐destructive and cost‐efficient assessment of large‐scale breeding experiments. We tested whether Fourier‐transform infrared (FTIR) spectroscopy, coupled with partial least squares regression, could serve as an alternative to traditional wet chemistry protocols for the determination of the chemical composition of juvenile wood in Scots pine for tree improvement purposes. FTIR spectra were acquired for 1,245 trees selected in two Scots pine (Pinus sylvestris L.) full‐sib progeny tests located in northern Sweden. Predictive models were developed using 70 reference samples with known chemical composition (the proportion of lignin, carbohydrates [cellulose, hemicelluloses and their structural monosaccharides glucose, mannose, xylose, galactose, and arabinose] and extractives). Individual‐tree narrow‐sense heritabilities and additive genetic correlations were estimated for all chemical traits as well as for growth (height and stem diameter) and wood quality traits (density and stiffness). Genetic control of the chemical traits was mostly moderate. Of the major chemical components, highest heritabilities were observed for hemicelluloses (0.43–0.47), intermediate for lignin and extractives (0.30–0.39), and lowest for cellulose (0.20–0.25). Additive genetic correlations among chemical traits were, except for extractives, positive while those between chemical and wood quality traits were negative. In both groups (chemical and wood quality traits), correlations with extractives exhibited opposite signs. Correlations of chemical traits with growth traits were near zero. The best strategy for genetic improvement of Scots pine juvenile wood for bioenergy production is to decrease and stabilize the content of extractives among trees and then focus on increasing the cellulose:lignin ratio.  相似文献   

17.
Mutations of the secondary cell wall   总被引:6,自引:0,他引:6  
It has not been possible to isolate a number of crucial enzymes involved in plant cell wall synthesis. Recent progress in identifying some of these steps has been overcome by the isolation of mutants defective in various aspects of cell wall synthesis and the use of these mutants to identify the corresponding genes. Secondary cell walls offer numerous advantages for genetic analysis of plant cell walls. It is possible to recover very severe mutants since the plants remain viable. In addition, although variation in secondary cell wall composition occurs between different species and between different cell types, the composition of the walls is relatively simple compared to primary cell walls. Despite these advantages, relatively few secondary cell wall mutations have been described to date. The only secondary cell wall mutations characterised to date, in which the basis of the abnormality is known, have defects in either the control of secondary cell wall deposition or secondary cell wall cellulose or lignin biosynthesis. These mutants have, however, provided essential information on secondary cell wall biosynthesis.  相似文献   

18.

Background and Aims

Plant cell enlargement is unambiguously coupled to changes in cell wall architecture, and as such various studies have examined the modification of the proportions and structures of glucuronoarabinoxylan and mixed-linkage glucan in the course of cell elongation in grasses. However, there is still no clear understanding of the mutual arrangement of these matrix polymers with cellulose microfibrils and of the modification of this architecture during cell growth. This study aimed to determine the correspondence between the fine structure of grass cell walls and the course of the elongation process in roots of maize (Zea mays).

Methods

Enzymatic hydrolysis followed by biochemical analysis of derivatives was coupled with immunohistochemical detection of cell wall epitopes at different stages of cell development in a series of maize root zones.

Key Results

Two xylan-directed antibodies (LM11 and ABX) have distinct patterns of primary cell wall labelling in cross-sections of growing maize roots. The LM11 epitopes were masked by mixed-linkage glucan and were revealed only after lichenase treatment. They could be removed from the section by xylanase treatment. Accessibility of ABX epitopes was not affected by the lichenase treatment. Xylanase treatment released only part of the cell wall glucuronoarabinoxylan and produced two types of products: high-substituted (released in polymeric form) and low-substituted (released as low-molecular-mass fragments). The amount of the latter was highly correlated with the amount of mixed-linkage glucan.

Conclusions

Three domains of glucuronoarabinoxylan were determined: one separating cellulose microfibrils, one interacting with them and a middle domain between the two, which links them. The middle domain is masked by the mixed-linkage glucan. A model is proposed in which the mixed-linkage glucan serves as a gel-like filler of the space between the separating domain of the glucuronoarabinoxylan and the cellulose microfibrils. Space for glucan is provided along the middle domain, the proportion of which increases during cell elongation.  相似文献   

19.
Hyperspectral Raman imaging was used to study the tissue/cell type specific distribution of lignin and cellulose polymers within the plant cell walls. Distinct differences in cell wall compositions were identified between two potential bioenergy feedstocks: corn stover and Eucalyptus globulus. Characteristic bands of 627, 1,175, 1,206, and 1,428 cm−1 were only observed for corn stover and 1,381 cm−1 was only present in E. globulus. One‐dimensional and two‐dimensional chemical maps of lignin and cellulose were generated for the stem of corn stover, ranging from the epidermis to the pith area and revealed that lignin and cellulose abundance varies significantly among different cell types in the following order: sclerenchyma cells and tracheids (∼5 times) > epidermal cells (∼3 times) > bundle sheath cells > parenchyma cells. The Raman mapping methods developed on corn stover were also validated on E. globulus and clearly highlighted their difference in lignin composition. Biotechnol. Bioeng. 2011;108: 286–295. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Histological staining methods commonly used for detecting cellulose and lignin in cell walls were combined with epifluorescence microscopy to visualize differences in lignification between and within cellular elements. We tested our approach on sections of one-year-old branches of Fraxinus ornus L., Myrtus communis L., Olea europaea L., Pistacia lentiscus L. and Rhamnus alaternus L., containing both normal and tension wood. Sections were subjected to various staining techniques, viz. safranin O, safranin O/fast green FCF, and alcoholic solutions of safranin O/astra blue, according to the commonly accepted protocols. Stained and unstained sections were compared using both light and epifluorescence microscopy. Safranin O with or without counterstaining hid the strong fluorescence of vessel walls, cell corners and middle lamellae allowing the secondary wall fibers to fluoresce more clearly. Epifluorescence microscopy applied to stained sections showed more cell wall details than autofluorescence of unstained sections or white light microscopy of counterstained sections. This simple approach proved reliable and valuable for detecting differences in lignification in thick sections without the need for costly equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号