首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methylmethacrylate (MMA) is the most commonly used embedding medium for sectioning undecalcified bone; however, a number of problems exist with its use in a research laboratory. MMA requires a long infiltration time and temperature control, and it reacts with many polymers. We used Kleer Set resin as an alternative embedding medium for sectioning undecalcified bone specimens. Fluorochrome labeled bone specimens were sectioned transversely using a ground section technique and longitudinally on a sledge macrotome. The slides were viewed using both transmitted light and epifluorescence microscopy. High quality sections were obtained using Kleer Set resin for both sectioning techniques. We have shown that this new embedding medium is simpler, safer, quicker to use and does not interfere with visualization of fluorochromes.  相似文献   

2.
Methylmethacrylate (MMA) is the most commonly used embedding medium for sectioning undecalcified bone; however, a number of problems exist with its use in a research laboratory. MMA requires a long infiltration time and temperature control, and it reacts with many polymers. We used Kleer Set resin™ as an alternative embedding medium for sectioning undecalcified bone specimens. Fluorochrome labeled bone specimens were sectioned transversely using a ground section technique and longitudinally on a sledge macrotome. The slides were viewed using both transmitted light and epifluorescence microscopy. High quality sections were obtained using Kleer Set resin™ for both sectioning techniques. We have shown that this new embedding medium is simpler, safer, quicker to use and does not interfere with visualization of fluorochromes.  相似文献   

3.
Methylmethacrylate (MMA) embedding of undecalcified bone is routinely employed for histomorphometric analyses. Although MMA-embedded bone has been used for immunolabeling at the light microscopic level after removal of the resin, there are no such reports for electron microscopy. The aim of the present study was to determine whether MMA embedding can be used for ultrastructural immunolabeling and how it compares to LR White (LRW), an acrylic resin frequently used for immunocytochemistry of bone. Rat tibiae were fixed by vascular perfusion with aldehyde and embedded either in MMA or LRW resin. Thin sections were processed for postembedding protein A-gold immunolabeling with antibodies to rat bone sialoprotein (BSP) and osteopontin (OPN). The density of gold particles over bone was quantified. The density and distribution of immunolabeling for BSP and OPN respectively, were comparable between MMA and LRW. These results indicate that MMA performs as well as LRW for the ultrastructural immunolabeling of noncollagenous bone matrix proteins.  相似文献   

4.
Histology of plastic embedded undecalcified bone represents a challenging problem to the histotechnologist. We outline here an exploration of LR White resin as a suitable medium for histologic study of undecalcified rat tibia. A procedure was developed for light microscopy of rat tibia embedded in LR White and sectioned by sawing-grinding technics. The specimens were fixed in 10% neutral buffered formalin or alcohol-acetic acid-formol, dehydrated in ethanol, defatted in chloroform followed by resin infiltration and heat-curing of embedded blocks. The procedure of dehydration, defatting, infiltration, and polymerization can be completed within 10 days. Cold curing with accelerator provided by the manufacturer did not yield superior results compared to blocks cured with heat. Thick sections were obtained using a diamond wire saw, attached to plexiform slides, then ground and polished. Surface staining with Von Kossa silver reagent or toluidine blue revealed satisfactory morphological preservation of the mineralized bone sections. Artifacts like small bubbles appeared occasionally and could not be avoided despite prolonged infiltration or cold curing of blocks. Our method is relatively simple for base-line histologic study of rat tibia. The method offers advantages such as easy adaptability, reliable stainability, contrast, and resolution of bone architecture and marrow cells. Two other embedding media, Micro-Bed resin and Unicryl, were also tested, but produced inferior results.  相似文献   

5.
Methylmethacrylate (MMA) embedding is routinely used for histomorphometry of undecalcified bone preserved by prolonged immersion in ethanol, a procedure that yields poor ultrastructural detail. Because microwave irradiation (MWI) facilitates penetration of fixatives, we have investigated whether it can improve preservation by ethanol. Rat tibiae, some labeled with tetracycline, and a human iliac crest biopsy were immersed in 70% ethanol and dehydrated, both under MWI, for a total processing time of approximately 7 hr. Controls were not irradiated, and all specimens were embedded in MMA at 4C. They were then processed for histomorphometry, histochemistry, structural analysis, and immunolabeling. The results showed that histological preservation was improved with MWI. Static bone formation and resorption parameters and rate of mineral apposition were similar to those of conventionally processed specimens. Mineral distribution, as visualized by von Kossa staining and backscattered electron imaging, was not affected. Alkaline phosphatase and tartrate-resistant acid phosphatase activity, as well as immunolocalization of bone sialoprotein and osteopontin, were readily visualized. Ultrastructurally, osteopontin exhibited a typical distribution in mineralization foci, between calcified collagen fibrils, and at cement lines. These data show that MWI improves preservation and permits application of a broad spectrum of analytical methodologies on the same bone sample while considerably reducing processing time.  相似文献   

6.
A method is described for embedding and sectioning hard, undecalcified bone, which is designed for use by technical personnel. Bone fixed in a variety of ways is progressed through alcohols to ether-alcohol and then infiltrated with ether-alcohol solvented plastic (plasticized nitrocellulose) by a combination of centrifugation and high pressure embedding technics. The ether-alcohol is evaporated in a partially closed container in a manner similar to that employed in celloidin embedding, but differs from the latter by the removal of all of the solvent. Celloidin is the source of nitrocellulose and Amoil-S, the added plasticizer. Undecalcified adult bone of all types is readily cut at a thickness of 5-8μ on a heavy duty sliding microtome. The sections are then mounted on gelatinized slides. The procedures for preparing strip film radio-autograms of bone sections and subsequent staining of the preparation are given. The results obtained are illustrated.  相似文献   

7.
Small plant structures such as small primary roots, filamentous mosses and algae are difficult to orient for sectioning since they become wavy and curl during embedding. A method is described for embedding and orienting tiny plant specimens in a glycol methacrylate resin using self-constructed flat molds. Prior to sectioning, small samples can be oriented in both the longitudinal and the transverse plane. As several samples can be sectioned simultaneously, time-consuming trimming of the blocks is reduced substantially. The efficiency of this technique has been demonstrated using the tiny roots of the model plant Arabidopsis thaliana (L.) Heynh.  相似文献   

8.
Technovit 7200 VLC is an acrylic resin formulated for embedding undecalcified hard tissues which are prepared for light microscopy according to a cutting-grinding technique. To employ this resin for embedding and cutting soft tissues by ultramicrotomy, we carried out a qualitative study on biopsies of canine gingival mucosa using light and transmission electron microscopy. For a critical evaluation of this resin, some biopsies were embedded in Agar 100, an epoxy resin widely used in morphological studies. At the light microscopic level the samples embedded in Technovit 7200 VLC showed good morphology and excellent toluidine blue staining of different cell types and extracellular matrix. At the ultrastrueturallevel, nuclei, cytoplasmic organelles, collagen fibrils and ground substance appeared well preserved and showed high electron density. The acrylic resin was stable under the electron beam and its degree of shrinkage appeared to be very low. We conclude that Technovit 7200 VLC can be employed for ultramicrotomy for both light and electron microscopic investigation of soft tissues.  相似文献   

9.
Technovit 7200 VLC is an acrylic resin formulated for embedding undecalcified hard tissues which are prepared for light microscopy according to a cutting-grinding technique. To employ this resin for embedding and cutting soft tissues by ultramicrotomy, we carried out a qualitative study on biopsies of canine gingival mucosa using light and transmission electron microscopy. For a critical evaluation of this resin, some biopsies were embedded in Agar 100, an epoxy resin widely used in morphological studies. At the light microscopic level the samples embedded in Technovit 7200 VLC showed good morphology and excellent toluidine blue staining of different cell types and extracellular matrix. At the ultrastrueturallevel, nuclei, cytoplasmic organelles, collagen fibrils and ground substance appeared well preserved and showed high electron density. The acrylic resin was stable under the electron beam and its degree of shrinkage appeared to be very low. We conclude that Technovit 7200 VLC can be employed for ultramicrotomy for both light and electron microscopic investigation of soft tissues.  相似文献   

10.
To evaluate the osteogenic potential of novel implant materials, it is important to examine their effect on osteoblastic differentiation. Characterizing the tissue response at the bone-biomaterial interface in vivo at a molecular level would contribute significantly to enhancing our understanding of tissue integration of endosseous implant materials. We describe here a new technique that overcomes difficulties commonly associated with performing immunohistochemistry on undecalcified sawed sections of bone. Sheep mandible specimens were fixed in an ethanol based fixative to maintain adequate antigenicity of the tissue. As a result, it was possible to omit antigen retrieval at high temperature for recovery of antigenicity, and detachment of sections from the slides was avoided. Following dehydration and infiltration, the specimens were embedded in a resin composed of polymethylmethacrylate and polybutylmethacrylate. Polymerization was achieved by adding benzoylperoxide and N,N-dimethyl-toluidine. This resin was selected because it maintained the antigenicity of the tissue, provided adequate properties for cutting 50 µm thick sections, and it facilitated deacrylizing the sawed sections. Acid-resistant acrylic slides were glued to the blocks using an epoxy resin based two-component adhesive to avoid detachment of the slides during the deacrylation procedure. Samples were stained for alkaline phosphatase, type I collagen, osteonectin, osteopontin, osteocalcin and bone sialoprotein. The EnVision + ™ dextran polymer conjugate two-step visualization system was applied for immunohistochemical detection of these bone matrix proteins. This procedure yielded positive staining for the osteogenic markers in cells and matrix components. The protocol described here facilitates the use of immunohistochemistry on resin embedded sawed sections of bone and provides a convenient and reliable method that can be used routinely for immunohistochemical analysis of hard tissue specimens containing implant materials.  相似文献   

11.
A resin mixture containing Araldite M, 15 ml; Epon 812, 25 ml; dodecenyl succinic anhydride, 55 ml; and dibutyl phthlate, 2 ml, was found to be the optimal embedding resin for both fresh and acetylated pollen exines. Diamond knives greatly facilitated sectioning. Exine fine structure, and stratification patterns in fresh pollen were most clearly revealed by section staining of glutaraldehyde-fixed (2 hr), OsO4-stained (2 hr) specimens. Acetylated exines (acetic anhydride-H2SO4 9:1; 100 C, 5 min) did not require additional treatment prior to embedding, but section staining of exines so treated greatly enhanced stain differentiation of exine subunits. Successfully used section stains included Reynold's lead hydroxide, Millonig's lead citrate and aqueous KMnO4. Additional procedures were tried but were found to have serious disadvantages, e. g. exines treated with KMnO4 before embedding shattered badly during sectioning.  相似文献   

12.
A gallocyanin method for demonstrating cement lines in thin, undecalcified sections of bone has been developed that is compatible with prestaining with ostcochrome before plastic embedding. After sectioning at 5 pm on the Jung K heavy duty microtome, the sections are attached to a microslide using Haupt's adhesive mounting medium, placed on a slide warmer at 37 C until completely dry, and deplasticized in xylene at 45 C for 16-44 hr. Sections are stained with 0.15% gallocyanin-5% chrome alum solution for 30 min, followed by staining in buffered Villanueva blood stain for 1-1 1/2 hr, quickly dehydrated, differentiated in equal parts xylene and 100% ethanol, cleared, and mounted in Eukitt's medium. Reversal lines appear as thin, scalloped, blue or purple lines approximately 0.3 pm wide, and arrest lines as thick, homogeneous, straight or evenly curved, dark blue or purple lines approximately 2 pm wide. The method also demonstrates abnormal halo volumes around ostcocytes, old and new bone matrix, osteoid seams, and the granular mineralization front at the osteoid-bone interface. It promises to be valuable in the study of age-related bone loss, osteoporosis, and metabolic bone disease.  相似文献   

13.
A gallocyanin method for demonstrating cement lines in thin, undecalcified sections of bone has been developed that is compatible with prestaining with osteochrome before plastic embedding. After sectioning at 5 microns on the Jung K heavy duty microtome, the sections are attached to a microslide using Haupt's adhesive mounting medium, placed on a slide warmer at 37 C until completely dry, and deplasticized in xylene at 45 C for 16-24 hr. Sections are stained with 0.15% gallocyanin-5% chrome alum solution for 30 min, followed by staining in buffered Villanueva blood stain for 1-1 1/2 hr, quickly dehydrated, differentiated in equal parts xylene and 100% ethanol, cleared, and mounted in Eukitt's medium. Reversal lines appear as thin, scalloped, blue or purple lines approximately 0.3 micron wide, and arrest lines as thick, homogeneous, straight or evenly curved, dark blue or purple lines approximately 2 microns wide. The method also demonstrates abnormal halo volumes around osteocytes, old and new bone matrix, osteoid seams, and the granular mineralization front at the osteoid-bone interface. It promises to be valuable in the study of age-related bone loss, osteoporosis, and metabolic bone disease.  相似文献   

14.
A new type of apparatus for sectioning samples of hard, undecalcified bone is described. Slices of fresh or archeological human bone 4-5 mm thick are dehydrated and then embedded in epoxy resin. The apparatus used to prepare sections from the resulting blocks consists of a low-speed rim-type diamond cut-off wheel and a slowly advancing table carrying the specimen held in a rotating mount. Sections may be cut at a thickness of 80 micron +/- 1%. After cleaning in an ultrasonic bath, these can be mounted on slides for quantitative microscopic examination with transmitted light. Grinding and polishing are not necessary. The results obtained are illustrated.  相似文献   

15.
A technique for demonstrating cement lines in thin, undecalcified transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 μm, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.  相似文献   

16.
A technique for demonstrating cement lines in thin, undecalcified transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 microns, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.  相似文献   

17.
A technique for demonstrating cement lines in thin, undecalcified, transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 microns, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.  相似文献   

18.
Testing of embedding technics adapted to 1-5 μ sectioning of mites in their developmental stages has lead to the selection of methacrylate resins. This kind of embedding medium supplies the bonding necessary, especially with yolky eggs, to maintain the integrity of fragile or refractory specimens during sectioning. Whereas paraffin offers the advantage of ribboning, the customary use of a plastic matrix does not. However, DeGiusti and Ezman (1955) use mixtures of plastic and paraffin to obtain the ribboning qualities of the latter.  相似文献   

19.
In performing in situ hybridizations, nonisotopic nucleic acid labeling coupled with colorimetric detection offers a safer, easier and more rapid alternative to using radioactively labeled nucleic acid probes and microscopic autoradiography. Whole mount in situ hybridization is also advantageous, because many samples can be processed identically and the reduced handling of specimens greatly reduces the risk of exposing tissues to RNase(s). The thickness of whole mount specimens, however, often prevents accurate determination of sites of expression within specific tissues. Although post-hybridization embedding and sectioning is a solution to this problem, the precipitate formed following the common colorimetric detection procedure is soluble in the organic solvents used for dehydration prior to embedding. We have developed a dehydration and embedding procedure that takes advantage of the compatibility of L.R. White® resin containing 10% (v/v) polyethylene glycol 400, and heat polymerized. The addition of the plasticizer allows L.R. White® embedded tissues to be sectioned at 10 μm providing excellent signal contrast.  相似文献   

20.
A new type of apparatus for sectioning samples of hard, undecalcified bone is described. Slices of fresh or archeological human bone 4-5 mm thick are dehydrated and then embedded in epoxy resin. The apparatus used to prepare sections from the resulting blocks consists of a low-speed rim-type diamond cut-off wheel and a slowly advancing table carrying the specimen held in a rotating mount. Sections may be cut at a thickness of 80 μm ± 1%. After cleaning in an ultrasonic bath, these can be mounted on slides for quantitative microscopic examination with transmitted light. Grinding and polishing are not necessary. The results obtained are illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号