首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
We introduce a generic, simple, and inexpensive method for performing microbiological, enzymatic, or inorganic catalysis with solids using standard histology and microbiology laboratory equipment. Histology cassettes were used to standardize hydrodynamic conditions and to protect the catalysts and their solid supports. Histology cassettes have the following advantages: they are readily available, inexpensive, solvent and acid resistant, automatable, and the slots in the cassette walls allow liquid to circulate freely. Standard Erlenmeyer flasks were used as reaction vessels. We developed a new camera to observe the movement and position of the histology cassettes as well as the liquid in the Erlenmeyer flasks. The camera produces a stable image of the rotating liquid in the Erlenmeyer flask. This visualization method revealed that in a 250 ml Erlenmeyer flask, stable operating conditions are achieved at a shaking frequency of 300 rpm and a fill volume of 30 ml. In vessels with vertical walls, such as beakers or laboratory bottles, the movement of the histology cassette is not reproducible. Mass transfer characterization using a biological model system and the chemical sulfite-oxidation method revealed that the histology cassette does not influence gas-liquid mass transfer.  相似文献   

2.
We introduce a generic, simple, and inexpensive method for performing microbiological, enzymatic, or inorganic catalysis with solids using standard histology and microbiology laboratory equipment. Histology cassettes were used to standardize hydrodynamic conditions and to protect the catalysts and their solid supports. Histology cassettes have the following advantages: they are readily available, inexpensive, solvent and acid resistant, automatable, and the slots in the cassette walls allow liquid to circulate freely. Standard Erlenmeyer flasks were used as reaction vessels. We developed a new camera to observe the movement and position of the histology cassettes as well as the liquid in the Erlenmeyer flasks. The camera produces a stable image of the rotating liquid in the Erlenmeyer flask. This visualization method revealed that in a 250 ml Erlenmeyer flask, stable operating conditions are achieved at a shaking frequency of 300 rpm and a fill volume of 30 ml. In vessels with vertical walls, such as beakers or laboratory bottles, the movement of the histology cassette is not reproducible. Mass transfer characterization using a biological model system and the chemical sulfite-oxidation method revealed that the histology cassette does not influence gas-liquid mass transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号