首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We introduce a generic, simple, and inexpensive method for performing microbiological, enzymatic, or inorganic catalysis with solids using standard histology and microbiology laboratory equipment. Histology cassettes were used to standardize hydrodynamic conditions and to protect the catalysts and their solid supports. Histology cassettes have the following advantages: they are readily available, inexpensive, solvent and acid resistant, automatable, and the slots in the cassette walls allow liquid to circulate freely. Standard Erlenmeyer flasks were used as reaction vessels. We developed a new camera to observe the movement and position of the histology cassettes as well as the liquid in the Erlenmeyer flasks. The camera produces a stable image of the rotating liquid in the Erlenmeyer flask. This visualization method revealed that in a 250 ml Erlenmeyer flask, stable operating conditions are achieved at a shaking frequency of 300 rpm and a fill volume of 30 ml. In vessels with vertical walls, such as beakers or laboratory bottles, the movement of the histology cassette is not reproducible. Mass transfer characterization using a biological model system and the chemical sulfite-oxidation method revealed that the histology cassette does not influence gas-liquid mass transfer.  相似文献   

2.
    
Shake flask cultivation, a cornerstone in bioprocess research encounters limitations in supplying sufficient oxygen and exchanging gases, restricting its accuracy in assessing microbial growth and metabolic activity. In this communication, we introduce an innovative gas supply apparatus that harnesses the rotational motion of a shaking incubator to facilitate continuous air delivery, effectively overcoming these limitations. We measured the mass transfer coefficient (kLa) and conducted batch cultures of Corynebacterium glutamicum H36LsGAD using various working volumes to assess its performance. Results demonstrated that the gas supply apparatus significantly outperforms conventional silicone stoppers regarding oxygen delivery, with kLa values of 2531.7 h−1 compared to 20.25 h−1 at 230 rpm. Moreover, in batch cultures, the gas supply apparatus enabled substantial improvements in microbial growth, maintaining exponential growth even at larger working volumes. Compared to the existing system, an increase in final cell mass by a factor of 3.4-fold was observed when utilizing 20% of the flask's volume, and a remarkable 9-fold increase was achieved when using 60%. Furthermore, the gas supply apparatus ensured consistent oxygen supply and efficient gas exchange within the flask, overcoming challenges associated with low working volumes. This approach offers a simple yet effective solution to enhance gas transfer in shake flask cultivation, bridging the gap between laboratory-scale experiments and industrial fermenters. Its broad applicability holds promise for advancing research in bioprocess optimization and scale-up endeavors.  相似文献   

3.
    
Oxygen mass transfer in shake flasks is an important aspect limiting the culture of aerobic microorganisms. In this work, mass transfer of oxygen through a closure and headspace of shake flasks is investigated. New equations for prediction of kGa in shake flasks with closures are introduced. Using Pseudomonas putida, microbial growth on glucose (fast metabolism) and phenol (slow metabolism) in shake flasks with closures were studied, considering both substrate and oxygen restrictions. A combined model for oxygen mass transfer and microbial growth is shown to accurately predict experimental oxygen concentrations and oxygen yield factors during growth experiments more accurately than previous models.  相似文献   

4.
    
Scale-up from shake flasks to fermenters has been hampered by the lack of knowledge concerning the influence of operating conditions on mass transfer, hydromechanics, and power input. However, in recent years the properties of shake flasks have been described with empirical models. A practical scale-up strategy for everyday use is introduced for the scale-up of aerobic cultures from shake flasks to fermenters in batch and continuous mode. The strategy is based on empirical correlations of the volumetric mass transfer coefficient (k(L) a) and the pH. The accuracy of the empirical k(L) a correlations and the assumptions required to use these correlations for an arbitrary biological medium are discussed. To determine the optimal pH of the culture medium a simple laboratory method based on titration curves of the medium and a mechanistic pH model, which is solely based on the medium composition, is applied. The effectiveness of the scale-up strategy is demonstrated by comparing the behavior of Corynebacterium glutamicum on lactic acid in shake flasks and fermenters in batch and continuous mode. The maximum growth rate (micro(max) = 0.32 h(-1)) and the oxygen substrate coefficient (Y O2 /S= 0.0174 mol/l) of C. glutamicum on lactic acid were equal for shake flask, fermenter, batch, and continuous cultures. The biomass substrate yield was independent of the scale, but was lower in batch cultures (Y(X/S) = 0.36 g/g) than in continuous cultures (Y(X/S) = 0.45 g/g). The experimental data (biomass, respiration, pH) could be described with a simple biological model combined with a mechanistic pH model.  相似文献   

5.
探究重组大肠杆菌产尿素酶B(urease B subunit, UreB)的高密度发酵条件。通过实验室摇瓶和30 L发酵罐对UreB基因工程菌的发酵条件进行优化。结果表明:30 L发酵罐中以TB培养基为发酵培养基,接种量为5%,发酵温度为37 ℃,pH为6.8,溶氧量为30%左右,培养至2 h开始恒速流加50%甘油,4 h流加50%酵母提取物和50%胰蛋白胨,并加入终浓度为0.5 mmol/L的异丙基β-D-硫代半乳糖苷(isopropyl β-D-thiogalactoside,IPTG),诱导表达4 h,结束发酵,所得菌体干物质约为25.7 g/L,UreB表达量为31.4%。此工艺可以提高UreB的产量。  相似文献   

6.
    
Shake flasks are ubiquitous in cell culture and fermentation. However, conventional devices for measuring oxygen concentrations are impractical in these systems. Thus, there is no definitive information on the oxygen supply of growing cells. Here we report the noninvasive, nonintrusive monitoring of dissolved oxygen (DO) in shake flasks using a low-cost optical sensor. The oxygen-sensitive element is a thin, luminescent patch affixed to the inside bottom of the flask. The sensitivity and accuracy of this device is maximal up to 60% DO, within the range that is critical to cell culture applications. By measuring actual oxygen levels every 1 or 5 min throughout the course of yeast and E. coli fermentations, we found that a modest increase in shaker speed and a decrease in culture volume slowed the onset of oxygen limitation and reduced its duration. This is the first time that in situ oxygen limitation is reported in shake flasks. The same data is unattainable with a Clark type electrode because the presence of the intrusive probe itself changes the actual conditions. Available fiber optic oxygen sensors require cumbersome external connections and recalibration when autoclaved.  相似文献   

7.
Aims: To screen various Streptomyces cultures producing l ‐leucine aminopeptidase (LAP). Methods and Results: Twenty‐one Streptomyces strains were screened for LAP production. The best three producers were found to be Streptomyces mobaraensis NRRL B‐3729, Streptomyces gedanensis IFO 13427, and Streptomyces platensis NRRL 2364. pH optima of the three enzymes were in the range of 8·0–8·5 and the temperature optima varied between 50 and 65°C. LAP of S. mobaraensis was stable at 60°C and pH 8·5 for 60 min. Metal ion salts, CoCl2.6H2O and ZnSO4.7H2O in 0·7 mmol l?1 concentration enhanced the relative enzyme activity in all three enzymes. Molecular mass of LAP of S. mobaraensis was found to be approx. 37 kDa. Conclusions: Streptomyces mobaraensis NRRL B‐3729, S. gedanensis IFO 13427, and S. platensis NRRL 2364 were found to be good producers of extracellular LAP. The approx. 37 kDa enzyme of S. mobaraensis is considerably thermostable. Significance and Impact of the Study: A good number of Streptomyces were screened and the ability of the aminopeptidases to release a particular N‐terminal amino acid along with its good thermal stability makes them interesting for controlling the degree of hydrolysis and flavour development for a wide range of substrate.  相似文献   

8.
Pretreatment of beet molasses to increase pullulan production   总被引:2,自引:0,他引:2  
Pretreatment of beet molasses with cation exchange resin, sulphuric acid, tricalcium phosphate, potassium ferrocyanide, and ethylenediaminetetraacetic acid and disodium salt (EDTA) to increase the production of pullulan was investigated. Among the above techniques used for the removal of heavy metals, sulphuric acid treatment gave better results regarding polysaccharide concentration, polysaccharide yield, and sugar utilization. Aureobasidium pullulans grown on beet molasses produced a mixture of pullulan and other polysaccharides. The pullulan content of the crude polysaccharide was 30–35%. The addition of nutrients improved the production of polysaccharide. A maximum polysaccharide concentration (32·0±1·0 g litre−1) was achieved in molasses solution (70 g litre 1 initial sugar concentration, pH 6·5–7·5) treated with sulphuric acid and supplemented with K2HPO4 0·5%, -glutamic acid 1%, olive oil 2·5% and Tween 80 0·5%. In this case, the highest values of biomass dry weight (33·8±1·0 g litre−1), polysaccharide yield (63·5±2·5%), and sugar utilization (97·5±1·5%) were obtained at pH 6·5, 3·5, and 4·5–7·5, respectively.  相似文献   

9.
10.
The identification of carotenoids in B. trispora during pigment production from deproteinized hydrolyzed whey supplemented with plant oils was studied. The carotenoid content in Blakeslea trispora were β-carotene, γ-carotene, and lycopene. The composition of carotenoids depends of the amount of oils added to the cheese whey. At the maximum concentration of carotenoids, the proportions of β-carotene, γ-carotene, and lycopene (as percent of total carotenoids) was 60.1%, 32.5%, and 7.4%, respectively.  相似文献   

11.
    
To overcome catabolite repression, industrial fermentation processes are usually operated in substrate-limited fed-batch mode. Therefore, the implementation of such an operating mode at small scale is crucial to maintain comparable process conditions. In this study, Bacillus licheniformis, a well-known producer of proteases, was cultivated with carbon (glucose)- and nitrogen (ammonium)-limited fed-batch conditions using the previously introduced membrane-based fed-batch shake flasks. A repression of protease production by glucose and ammonium was thus avoided and yields increased 1.5- and 2.1-fold relative to batch, respectively. An elevated feeding rate of glucose caused depletion of ammonium, which was recognizable within the oxygen transfer rate (OTR) signal measured with the Respiration Activity MOnitoring System (RAMOS). Ammonium limitation was prevented by feeding ammonium simultaneously with glucose. The OTR signal clearly indicated the initiation of the fed-batch phase and gave direct feedback on the nutrient release kinetics. Increased feeding rates of glucose and ammonium led to an elevated protease activity without affecting the protease yield (YP/Glu). In addition to YP/Glu, protease yields were determined based on the metabolized amount of oxygen . The results showed that the protease production correlated with the amount of consumed glucose as well as with the amount of consumed oxygen. The membrane-based fed-batch shake flask in combination with the RAMOS device is a powerful combination to investigate the effect of substrate-limited fed-batch conditions.  相似文献   

12.
Aureobasidium pullulans P56 was investigated using an adaptation technique and a mixed culture system. The adaptation of A. pullulans and the mixed cultures of A. pullulans and/or Lactobacillus brevisX20, Debaryomyces hansenii 194 and Aspergillus niger did not increase the production of polysaccharide. Enzymic hydrolysis of lactose in deproteinized whey gave a higher polysaccharide concentration and polysaccharide yield than acidic hydrolysed lactose. Maximum polysaccharide concentration (11.0 ± 0.5 g L−1), biomass dry weight (10.5 ± 0.4 g L−1), polysaccharide yield (47.2 ± 1.8%) and sugar utilization (93.2 ± 2.8%) were achieved using enzyme-hydrolysed whey (pH 6.5) containing 25 g L−1 lactose and supplemented with K2HPO4 0.5%, L-glutamic acid 1%, olive oil 2.5%, and Tween 80 0.5%. In this case the pullulan content of the crude polysaccharide was 40%. Received 16 December 1997/ Accepted in revised form 12 March 1999  相似文献   

13.
14.
    
An often underestimated problem when working with different clones in microtiter plates and shake flask screenings is the non‐parallel and non‐equal growth of batch cultures. These growth differences are caused by variances of individual clones regarding initial biomass concentration, lag‐phase or specific growth rate. Problems arising from unequal growth kinetics are different induction points in expression studies or uneven cultivation periods at the time of harvest. Screening for the best producing clones of a library under comparable conditions is thus often impractical or even impossible. A new approach to circumvent the problem of unequal growth kinetics of main cultures is the application of fed‐batch mode in precultures in microtiter plates and shake flasks. Fed‐batch operation in precultures is realized through a slow‐release system for glucose. After differently growing cultures turn to glucose‐limited growth, they all consume the same amount of glucose due to the fixed feed profile of glucose provided by the slow‐release system. This leads to equalized growth. Inherent advantages of this method are that it is easy to use and requires no additional equipment like pumps. This new technique for growth equalization in high‐throughput cultivations is simulated and verified experimentally. The growth of distinctly inoculated precultures in microtiter plates and shake flasks could be equalized for different microorganisms such as Escherichia coli and Hansenula polymorpha. Biotechnol. Bioeng. 2009;103: 1095–1102. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
The performance of currently available minibioreactors with volumes below about 100 ml is reviewed. Bioreactors are characterized by their area of application, by mass transfer and mixing characteristics and by their suitability for on-line monitoring and control. The review comprises shaken bioreactors such as shake-flasks, microtiter plates and test-tubes, stirred bioreactors including spinner-flasks for the cultivation of mammalian cells and various special reactors particularly involving on-line monitoring as e.g. membrane inlet mass spectrometry and NMR.  相似文献   

16.
Ectomycorrhizal syntheses between Picea abies and the fungal associates Scleroderma citrinum, Boletus luridus, and Tricholoma vaccinum were carried out using Melin's Erlenmeyer flask technique. The symbioses of S. citrinum were characterized by a mantle composed of an outer prosenchymatous and an inner synenchymatous layer. The mantles of B. luridus and T. vaccinum were solely prosenchymatous. Rhizomorphs were produced in all treatments, but only in association with S. citrinum were they differentiated with additional, enlarged hyphae. All synthesized ectomycorrhizae were white or whitish to light orange and greyishorange. On large-scale root sampling in two differing Picea abies forests in Switzerland, nine out of a total of 22 morphological types of ectomycorrhizae were white or yellow in colour and were, therefore, comparable with the synthesized ectomycorrhizae. These nine natural types generally had distinct mantle features (irregular synenchyma, gelatinous matrix, cystides, thick-walled hyphae), but mostly lacked clamp connections. Synthesized ectomycorrhizae, on the other hand, lacked distinct mantle characteristics and always had clamp connections. Natural and synthesized white or yellow ectomycorrhizae did not coincide morphologically and thus identification of the fungal partners of natural symbioses by means of in vitro-synthesis with potential ectomycorrhizal fungi was not possible in the present study.  相似文献   

17.
动物细胞培养用生物反应器设计和放大的关键问题是细胞破损与供氧和混合的矛盾,在分析细胞破损机理基础上,提出了动物细胞培养生物反应器的设计原理——设计模型和有关设计条件,从而清楚地确立了细胞死亡速度与培养基组成、反应器设计和操作参数间的定量关系,以及反应器设计应遵循的保证细胞生长和满足传质要求的条件。还对强化传质和抑制细胞破损这一矛盾作了简要分析和讨论。  相似文献   

18.
In this paper, the carbonic anhydrase II (CA II) enzyme active site is modeled using ab initio calculations and molecular dynamics simulations to examine a number of important issues for the enzyme function. It is found that the Zn2+ ion is dominantly tetrahedrally coordinated, which agrees with X-ray crystallographic studies. However, a transient five-fold coordination with an extra water molecule is also found. Studies of His64 conformations upon a change in the protonation states of the Zn-bound water and the His64 residue also confirm the results of an X-ray study which suggest that the His64 conformation is quite flexible. However, the degree of water solvation is found to affect this behavior. Water bridge formation between the Zn-bound water and the His64 residue was found to involve a free energy barrier of 2–3 kcal/mol and an average lifetime of several picoseconds, which supports the concept of a proton transfer mechanism through such a bridge. Mutations of various residues around the active site provide further insight into the corresponding experimental results and, in fact, suggest an important role for the solvent water molecules in the CA II catalytic mechanism. Proteins 33:119–134, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
对姬松茸(Agaricus bLazei.Murrill)的摇瓶培养作初步探索。结果表明:①适合姬松茸菌丝活化的培养基为:PDA,麸皮100 g/L,pH自然;②摇瓶培养适宜的培养基为:蔗糖2%,黄豆粉1%,玉米粉2%,酵母粉0.2%,(NH4)2SO4 0.1%,MgSO4·7H2O 0.05%,CaCO3 0.1%。  相似文献   

20.
Summary Histological methods have contributed significantly to our understanding of in vitro culture systems. A good histological study based on anatomical and histochemical changes provides insight into cellular processes and provides clues that allow for the proposal of hypotheses for further experimentation. This article serves to draw attention to the use of a histological approach to one’s experimental system. Some of the common mistakes in the handling and processing of explants are discussed. A protocol for the plastic embedding method is detailed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号