首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The cell bodies of the preganglionic neurons of the chick ciliary ganglion were supplied with 3H-glutamic acid by intracerebral injection. The ciliary ganglia were studied with light and E.M. radioautography at 3, 18, 24 hours, 2, 6 and 16 days after injection. The reaction in the ganglion was intense over the preganglionic structures but very weak over the ganglionic cell bodies. The reaction increased in intensity from the myelinated region toward the ending; within the axon, the radioactivity was rather peripheral during early stages and more evenly distributed from the second day onward. The ending showed two peaks of radioactivity, at 18 hours and at 6 days; these peaks are interpreted as the accumulation of material which arrived in two phases; the first with an average velocity greater than 80 mm/ day and the second with a velocity of 2–5 mm/day. Within the nerve ending, the material transported in the fast phase was associated preferentially with the axoplasm rich in synaptic vesicles, close to the synaptic region, whereas the material transported in the slow phase was associated rather with mitochondria and the axoplasm devoid of synaptic vesicles that lies away from the synaptic surface. In contrast to what is observed with lysine, the density of the reaction on the preterminal axons was much lower than that on the endings. It is suggested that a protein rich in glutamyl residues with a rather long mean-life is transported to the ending in the fast phase.On leave from the Catholic University, Santiago, Chile.Supported by Institut National de la Santé et de la Recherche Médicale, France and IBRO. Acknowledgement. I express my sincere thanks to Dr. B. Droz for his hospitality and for helpful discussions throughout the work.  相似文献   

2.
Rats 24 d old were injected intraocularly with [2-3H]glycerol and [35S]methionine and killed 1 h-60 d later. 35S label in protein and 3H label in total phospholipid and a mitochondria-specific lipid, diphosphatidylglycerol(DPG), were determined in optic pathway structures (retinas, optic nerves, optic tracts, lateral geniculate bodies, and superior colliculi). Incorporation of label into retinal protein and phospholipid was nearly maximal 1 h postinjection, after which the label appeared in successive optic pathway structures. Based on the time difference between the arrival of label in the optic tract and superior colliculus, it was calculated that protein and phospholipid were transported at a rate of about 400 mm/d, and DPG at about half this rate. Transported labeled phospholipid and DPG, which initially comprised 3-5% of the lipid label, continued to accumulate in the visual structures for 6-8 d postinjection. The distribution of transported material among the optic pathway structures as a function of time differed markedly for different labeled macromolecules. Rapidly transported proteins distributed preferentially to the nerve endings (superior colliculus and lateral geniculate). Total phospholipid quickly established a pattern of comparable labeling of axon (optic nerve and tract) and nerve endings. In contrast, the distribution of transported labeled DPG gradually shifted toward the nerve ending and stabilized by 2-4 d. A model is proposed in which apparent "transport" of mitochondria is actually the result of random bidirectional saltatory movements of individual mitochondria which equilibrate them among cell body, axon, and nerve ending pools.  相似文献   

3.
The axonal transport of labelled proteins was studied in the optic system of adult rabbits after an intraocular injection of [3H]Ieucine. It was demonstrated that the precursor was incorporated into protein, which was transported along the axons of the retinal ganglion cells. Intraocularly injected puromycin inhibited protein synthesis in the retina and markedly inhibited the appearance of labelled protein in the optic nerve and tract. It was further demonstrated by intracisternal injection of [3H]leucine that an intraocular injection of puromycin did not affect the local protein synthesis in the optic nerve and tract. Cell fractionation studies of the optic nerve and tract showed that the rapidly migrating component, previously described as moving at an average rate of 110-150 mm/day, was largely associated with the microsomal fraction. About 40 per cent of the total protein-bound radioactivity in this component was found in the microsomal fraction and about 15 per cent was recovered in the soluble protein fraction. Most of the labelled material moving at a rate of 1-5-2 mm/day was soluble protein. The specific radioactivity of this component was about ten times greater than that of the fast one. In the slow component about 50 per cent of the radioactivity was found in the soluble protein fraction and about 10 per cent of the radioactivity was recovered in the microsomal fraction. Radioautography demonstrated incorporated label in the neuropil structures in the lateral geniculate body as early as 4-8 hr after intraocular injection. The labelling of the neuropil increased markedly during the first week, and could be observed after 3 weeks.  相似文献   

4.
FAST AND SLOW COMPONENTS IN AXONAL TRANSPORT OF PROTEIN   总被引:29,自引:8,他引:21       下载免费PDF全文
(a) After injection of labeled leucine into the eye of goldfish, radioactive protein rapidly accumulates in the contralateral optic tectum in the layer containing the synaptic endings of the optic fibers. This material reaches the tectum 6–12 hr after the isotope injection, a fact which indicates that the rate of transport is at least 40 mm per day. (b) This rapidly transported material has been shown to consist exclusively of protein, in which the label remains attached to leucine. (c) Inhibition of protein synthesis in the retina prevents the appearance of the transported protein in the tectum, but inhibition of protein synthesis in the tectum does not. Substances having some of the same properties as leucine, such as cycloleucine and norepinephrine, are not transported to the tectum. These experiments all indicate that the transported protein is synthesized in the retina. However, inhibition of retinal protein synthesis after this protein has been formed does not interfere with the transport mechanism itself. (d) The fast component consists of about 85% particulate material. It may be distinguished from a slowly moving component, transported at 0.4 mm per day, which contains about 5 times as much radioactivity as the fast component, and which consists of 60% particulate matter and 40% soluble protein.  相似文献   

5.
The morphogenetic differentiation of synapses in the cerebellum and the optic tectum of darkand light- reared rainbow trout was investigated at critical stages of development. During normal differentiation the cerebellum is characterized by the appearance of 'indented', spinelike synapses. This type of synapses increases with age and prevails from day 60 on. At the same time the number of 'flat' synapses decreases. In the cerebellum the highest synaptic density (123 ± 12 synapses/1,000 μm2) is reached 30 days after hatching when the larvae begin to swim. The optic tectum is characterized by a preponderance of flat synapses in early postnatal and adult life; maximal synaptic density (66 ± 5 synapses/1,000 μm2) is reached 60 days after hatching when the larvae have reached optimal visual acuity.
Light deprivation causes a considerable and significant reduction in the number of synapses per unit area in the cerebellum and the optic tectum. The length of synaptic contacts do not change. If light-deprived, the density of synaptic vesicles decreases significantly in the optic tectum of a 25-day-old trout (74 ± 3 instead of 132 ± 7 vesicles/μm2). In the cerebellum this effect is absent.  相似文献   

6.
Water-soluble proteins were extracted from individual retinas, optic nerves, combined optic tracts and lateral geniculate bodies, and superior colliculi of rabbits at 1, 3, and 18 days after injection of [3H]leucine into the right eye. The Ca2+-dependent protein modulator of 3':5'-cyclic-AMP phosphodiesterase (calmodulin) was isolated from these samples by a two-step polyacrylamide gel electrophoresis procedure. An analysis of the radioactivity incorporated into the total soluble proteins and the calmodulin revealed that most of the calmodulin was axonally transported at a slow rate (2--4 mm/day) and represented about 0.45% of the total transported soluble protein.  相似文献   

7.
1. The responses of single principal cells of the cat lateral geniculate nucleus (LGN) were recorded extracellulary from the optic radiation (OR) axons or intracellularly from the LGN. Electrical stimuli at different frequencies were applied to the optic tract (OT) to test the transneuronal and the synaptic signal transmission in the LGN. 2. The effect of acute deafferentation (by photocoagulation of the retinal receptive field) or of synaptic degeneration induced 2-4 days prior to the recording time on the LGN neuron signal transfer was studied. Immediately after deafferentation, the synaptic signal transfer by LGN neurons exhibits signs of hyperexcitability leading to multiple neuronal discharges. This acute deafferentation hyperexicitability is probably caused mainly by the disapperance of lateral inhibition mediated by LGN interneurons. The deafferentation hyperexcitability disappeared during electrical stimulation of the OT at frequencies greater than 10/sec. 3. With progressing degeneration of the synaptic terminals during the 2nd to 4th day after interruption of the optic nerve axoplasmic flow, the synaptic signal transfer by LGN neurons gradually deteriorates and ceases at the end of the fourth day. The signs of this deterioration (larger temporal scatter, increased exhaustability and reduced upper frequency limit of the transneuronal signal transmission and gradual reduction of the EPSP amplitude in D-neurons) were quantitatively investigated. 4. The neurophysiological data obtained at different levels of synaptic terminal degeneration are well correlated with morphological changes found within the degenerating synaptic terminals.  相似文献   

8.
Effects of single and repeated doses of acrylamide on fast and slow axonal transport of radio labeled proteins following the injection of L-[4,5-3H] leucine have been studied in the optic system of male Sprague-Dawley rats. A single dose of acrylamide (100 mg/kg) had no effect, but higher concentrations (200–300 mg/kg) altered the distribution of fast axonally transported materials in optic nerves and optic tracts. Repeated doses of acrylamide (30 mg/kg/day, 5 days per week for 4 weeks) produced degeneration of tibial nerves but spared optic nerves and optic tracts. Fast axonal transport rate in optic axons was reduced by 50% (reduced to 4 mm/h from 8 mm/h) in acrylamide treated animals. Acrylamide also slowed the velocity of slow axonal transport of labeled proteins in optic axons to 1.0 mm per day from 1.3 mm per day. Since acrylamide impaired the rate of both fast and slow axonal transport in the absence of overt morphological damage, it can be concluded that deficit in axonal transport is an important factor in the pathogenesis of axonal degeneration in acrylamide neuropathy.  相似文献   

9.
Cholinergic synaptic contact between motor neuron and skeletal muscle fiber is perhaps one of the core objects for investigations of molecular mechanisms underlying the communication between neurons and innervated cells. In the studies conducted on this object in the past few decades, a large amount of experimental data was obtained that substantially complemented a traditional view on synaptic transmission. In particular, it was established that (i) acetylcholine is released from the nerve ending in both quantal and nonquantal ways; (ii) molecular mechanisms of the processes of the quantal acetylcholine release—spontaneous and evoked by electrical stimuli—have unique features and can be regulated independently; (iii) acetylcholine release from the nerve ending is accompanied by a release of a number of synaptically active molecules modulating the processes of secretion or reception of the main mediator; (iv) signal molecules affecting the process of cholinergic neurotransmission can be released not only from the nerve ending but also from glial cells and muscle fiber; (v) molecular mechanisms of the regulation of synaptic transmission are highly diverse and go beyond the alteration of the number of the released acetylcholine quanta. Thus, the neuromuscular junction shall be deemed currently as complicated and adaptive synapse characterized by a wide range of multiloop intercellular signaling pathways between presynaptic motor neuron ending, muscle fiber, and glial cells ensuring a high safety factor of synaptic transmission and the possibility of its fine tuning.  相似文献   

10.
Abstract— —Both [14C]noradrenaline and [14C]leucine were injected into the coeliac ganglia of cats in an attempt to label the noradrenaline and protein of the granular vesicles, so that their movement in the splenic nerves could be followed.
When a constriction was placed on the nerves, labelled noradrenaline and protein accumulated just proximal to it, but there was no such accumulation below it, nor above a second, more distal constriction placed on the same nerve. This indicated that a neural transport mechanism, rather than uptake from the circulation, was responsible for the accumulation.
Peaks of labelled noradrenaline and protein were observed to move down the axon at about 5 mm/hr. In addition a slow moving component of axonal protein, advancing at about 1 mm/day, was detected.
The results demonstrate a rapid proximo-distal movement of noradrenaline and protein which could represent the transport of granular synaptic vesicles from their site of manufacture in the cell body to their site of storage in the nerve terminals within the spleen.  相似文献   

11.
Summary The stages of growth of the acoustic pathway (peripheral branch) were studied with the electron microscope in serial sections of the acoustic organs of 3 to 7 day chick embryos.Migration of cells from the acoustic epithelium was found at three days of incubation. These cells are presumably the futur ganglion cells. Fascicles of nerve fibers penetrate the epithelium through gaps of the basement membrane at 4–5 days of incubation. A dilatation develops in the intraepithelial fibers at about six days and thin and long prolongations grow from these dilatations and distribute among the cells. In the course of the next day the fibers embrace the foot of the sensory cell and the prolongations become shortened. Many of these extensions are charged with vesicles. At this stage (seven days) specialized structures (synaptic bars) differentiate in the region of the sensory cell contacting the large nerve ending (calix) or its short extensions. Each cell may show several synaptic bars, and each prolongation may contact with more than one cell.Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant Nr. 313-67.  相似文献   

12.
Diabetic retinopathy is a leading cause of blindness. Visual function disorders have been demonstrated in diabetics even before the onset of retinopathy. At early stages of experimental diabetes, axoglial alterations occur at the distal portion of the optic nerve. Although ischemic conditioning can protect neurons and synaptic terminals against ischemic damage, there is no information on its ability to protect axons. We analyzed the effect of ischemic conditioning on the early axoglial alterations in the distal portion of the optic nerve induced by experimental diabetes. Diabetes was induced in Wistar rats by an intraperitoneal injection of streptozotocin. Retinal ischemia was induced by increasing intraocular pressure to 120 mm Hg for 5 min; this maneuver started 3 days after streptozotocin injection and was weekly repeated in one eye, while the contralateral eye was submitted to a sham procedure. The application of ischemia pulses prevented a deficit in the anterograde transport from the retina to the superior colliculus, as well as an increase in astrocyte reactivity, ultraestructural myelin alterations, and altered morphology of oligodendrocyte lineage in the optic nerve distal portion at early stages of experimental diabetes. Ischemia tolerance prevented a significant decrease of retinal glutamine synthetase activity induced by diabetes. These results suggest that early vision loss in diabetes could be abated by ischemic conditioning which preserved axonal function and structure.  相似文献   

13.
Axonal transport of actin in rabbit retinal ganglion cells   总被引:9,自引:1,他引:8       下载免费PDF全文
We labeled proteins in the cell bodies of rabbit retinal ganglion cells with [35S]methionine and subsequently observed the appearance of radioactive actin in tissues containing the axons and synaptic terminals of these neurons, i.e., the optic nerve (ON), optic tract (OT), lateral geniculate nucleus (LGN) and the superior colliculus (SC). The temporal sequence of appearance of labeled actin (which was identified by its specific binding to DNase I, its electrophoretic mobility, and its peptide map) in these tissues indicated that actin is an axonally transported protein with a maximum transport velocity of 3.4--4.3 mm/d. The kinetics of labeling actin were similar to the kinetics of labeling two proteins (M1 and M2) which resemble myosin; these myosin-like proteins were previously found to be included in the groups of proteins (groups III and IV) transported with the third and fourth most rapid maximum velocities. The similarity in transport between actin and myosin-like proteins supports the idea that a number of proteins in the third and fourth transport groups may be functionally related by virtue of their involvement in a force-generating mechanism and suggests the possibility that these proteins may be axonally transported as a preformed force-generating unit.  相似文献   

14.
1.大白鼠下丘中心核(the Central Nucleus of the Inferior Colliculus,ICCN)内神经末稍以群体的形式有在,神经突触排列的类型主要为系列突触.2.末稍群体(Clustered ending)中轴突终末内含有多种类型的突触小泡.3.ICCN内具有不对称突触与对称突触两种类型的突触结构.4.在ICCN内,突触前终末有大量的突触小泡聚集,并且在突触后常有1—2个大线粒体靠近突触后膜.5.以上结果表明了脑干听觉中枢下丘中心核的结构及其突触连结的模式;突触的结构及其特点,这是频有意义的.  相似文献   

15.
Glucose is the major source of brain energy and is essential for maintaining normal brain and neuronal function. Hypoglycemia causes impaired synaptic transmission. This occurs even before significant reduction in global cellular ATP concentration, and relationships among glycolysis, ATP supply, and synaptic transmission are not well understood. We demonstrate that the glycolytic enzymes glyceraldehyde phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate kinase (3-PGK) are enriched in synaptic vesicles, forming a functional complex, and that synaptic vesicles are capable of accumulating the excitatory neurotransmitter glutamate by harnessing ATP produced by vesicle-bound GAPDH/3-PGK at the expense of their substrates. The GAPDH inhibitor iodoacetate suppressed GAPDH/3-PGK-dependent, but not exogenous ATP-dependent, [(3)H]glutamate uptake into isolated synaptic vesicles. It also decreased vesicular [(3)H]glutamate content in the nerve ending preparation synaptosome; this decrease was reflected in reduction of depolarization-induced [(3)H]glutamate release. In contrast, oligomycin, a mitochondrial ATP synthase inhibitor, had minimal effect on any of these parameters. ADP at concentrations above 0.1 mm inhibited vesicular glutamate and dissipated membrane potential. This suggests that the coupled GAPDH/3-PGK system, which converts ADP to ATP, ensures maximal glutamate accumulation into presynaptic vesicles. Together, these observations provide insight into the essential nature of glycolysis in sustaining normal synaptic transmission.  相似文献   

16.
The degenerative changes of the synaptic regions after nerve section have been studied with the electron microscope in the interneuronal synapse of the ventral ganglion of the acoustic nerve of the guinea pig. Fixation with buffered osmic tetroxide was carried out 22, 44, and 48 hours after destruction of the cochlea on one side; the contralateral ganglion being used as control. The submicroscopic organization of normal axosomatic and axodendritic synapses is described. In the synaptic ending four morphological components are recognized: the membrane, the mitochondria, the synaptic vesicles (19, 20), and the cytoplasmic matrix. The intimate contact of glial processes with the endings and with the surface of the nerve cell is described. At the level of the synaptic junction there is a direct contact of the limiting membranes of the ending and of the cell body or dendrite. Both contacting membranes constitute the synaptic one with a total thickness of about 250 A. This membrane has regions of higher electron density where the synaptic vesicles come into intimate contact and fuse with it. Definite degenerative submicroscopic changes in the nerve endings were observed after 22 hours of destruction of the cochlea and were much more conspicuous after 44 and 48 hours. After 22 hours there is swelling of the ending and decreased electron density of the matrix. Most synaptic vesicles have disappeared or seem to undergo a process of clumping and dissolution. Some mitochondria also show signs of degeneration. After 44 hours the synaptic vesicles have practically disappeared; mitochondria are in different stages of lysis; the membrane of the ending becomes irregular in shape, and there is shrinkage and in some cases detachment of the ending. No changes in the postsynaptic cytoplasm were observed. These observations and particularly the rapid lysis of the synaptic vesicles are discussed in correlation with data from the literature indicating the early alteration of synaptic function and the biochemical changes occurring after section of the afferent nerve. The hypothesis that the synaptic vesicles may be carriers of acetylcholine or other active substances (19, 20) and that they may act as biochemical units in synaptic transmission is also discussed.(2)  相似文献   

17.
The degenerative changes of the synaptic regions after nerve section have been studied with the electron microscope in the interneuronal synapse of the ventral ganglion of the acoustic nerve of the guinea pig. Fixation with buffered osmic tetroxide was carried out 22, 44, and 48 hours after destruction of the cochlea on one side; the contralateral ganglion being used as control. The submicroscopic organization of normal axosomatic and axodendritic synapses is described. In the synaptic ending four morphological components are recognized: the membrane, the mitochondria, the synaptic vesicles (19, 20), and the cytoplasmic matrix. The intimate contact of glial processes with the endings and with the surface of the nerve cell is described. At the level of the synaptic junction there is a direct contact of the limiting membranes of the ending and of the cell body or dendrite. Both contacting membranes constitute the synaptic one with a total thickness of about 250 A. This membrane has regions of higher electron density where the synaptic vesicles come into intimate contact and fuse with it. Definite degenerative submicroscopic changes in the nerve endings were observed after 22 hours of destruction of the cochlea and were much more conspicuous after 44 and 48 hours. After 22 hours there is swelling of the ending and decreased electron density of the matrix. Most synaptic vesicles have disappeared or seem to undergo a process of clumping and dissolution. Some mitochondria also show signs of degeneration. After 44 hours the synaptic vesicles have practically disappeared; mitochondria are in different stages of lysis; the membrane of the ending becomes irregular in shape, and there is shrinkage and in some cases detachment of the ending. No changes in the postsynaptic cytoplasm were observed. These observations and particularly the rapid lysis of the synaptic vesicles are discussed in correlation with data from the literature indicating the early alteration of synaptic function and the biochemical changes occurring after section of the afferent nerve. The hypothesis that the synaptic vesicles may be carriers of acetylcholine or other active substances (19, 20) and that they may act as biochemical units in synaptic transmission is also discussed.2  相似文献   

18.
The transport of RNA from the ganglion cell bodies within the retina to the contralateral optic tectum has been studied in the chick following intraocular injection of radioactive uridine. By tracing the appearance of labeled RNA at the proximal end of the optic nerve as it leaves the eyeball and comparing this to the time of arrival of RNA within the optic tectum, the migratory velocity of axonal RNA has been calculated to be around 12 mm per day. The continuation of RNA migration to the optic tectum in the presence of intracerebrally injected actinomycin-D but not in the presence of the intraocularly injected drug, suggests a retinal site of synthesis of the excess RNA found in the tectum innervated by the injected eye. A study of the rate of disppearance of radioactivity of the transported RNA in the optic lobes, suggested that this RNA turns over more rapidly than the bulk of tectal RNA. The destination of migrating RNA within the optic tectum has been autoradiographically examined. Most radioactive RNA is found in the outer tectal layers in which are found the afferent fibers of the optic tract and most of their synaptic terminations. Label is not confined to these areas however but is also present in the deeper layers of the optic tectum which are not known to contain any primary synapses of the axons from retinal ganglion cells.  相似文献   

19.
The cerebral cortex of the rat was submitted to an extensive cell fractionation schedule and in the various fractions, protein, proteolipid protein, total phospholipids, cholesterol, galactolipids, plasmalogens, and gangliosides were determined. With increasing purification the different isolated membranous structures: i.e. myelin, nerve ending membranes, synaptic vesicles, mitochondria, and microsomes, show a definite biochemical specialization reflected in their lipid composition. The presence of gangliosides in some nerve ending membranes is confirmed, and the possible functional role of these acid glyco-lipids is discussed. The importance of proteolipids as structural components of membranes is recognized. The richness of these compounds in myelin is confirmed and a special localization in the nerve ending membranes is indicated. Analysis of the molar ratios of the different lipids and proteins in the isolated membranes demonstrates that each one has a specific pattern of molecular organization. This pattern is discussed in relation to the macromolecular structures revealed by electronmicroscopy and some of the molecular models postulated for cell membranes.  相似文献   

20.
Based on the idea of differentiation-related changes in the glycosylation pattern of neurons, the expression of two cell surface oligosaccharide epitopes, N-acetyl-lactosamine (NALA), and its sulpho-glucuronyl derivative (HNK-1), was studied, by immunohistochemistry and Western blot experiments, in the developing chick retina beginning on day 2 of incubation (E2) until day 18 post-hatching. NALA was detectable on neuroepithelial cells as soon as the primary optic vesicles formed, and this pattern continued until E3. During subsequent retinal development NALA expression became progressively restricted in concert with the appearance of postmitotic neurons as revealed by neurite outgrowth, and with the formation of synaptic contacts until it disappeared at the end of the incubation period. The pattern of NALA expression was the inverse of HNK-1 which was detected for the first time at E3 on postmitotic ganglion cells accumulating at the vitreal surface. The number of HNK-1+ cells steadily increased until around E10, when the entire neural epithelium was labelled. Synchronously to synaptogenesis, most neurons lost their HNK-1 immunoreactivity. At the time of hatching the adult-like pattern was found, characterised by subpopulations of labelled horizontal, bipolar, amacrine, and ganglion cells. Immunoblot experiments demonstrated transient NALA glycosylation of protein bands, partially identical in their apparent molecular weight to those proteins with HNK-1 glycosylation. The observed temporospatial changes in the glycosylation patterns of distinct proteins during retinal development suggest NALA as a suitable marker for neuronal proliferation, and HNK-1 for differentiation and establishment of final synaptic configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号