首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Spirolides are marine compounds of the cyclic imine group. Although the mechanism of action is not fully elucidated yet, cholinergic (muscarinic and nicotinic) receptors have been proposed as the main targets of these toxins. In this study we examined the effect of 13-desmethyl spirolide-C (SPX) on amyloid-beta (Aβ) accumulation and tau hyperphosphorylation in a neuronal model from triple transgenic mice (3xTg) for Alzheimer disease (AD). In vitro treatment of 3xTg cortical neurons with SPX reduced intracellular Aβ accumulation and the levels of phosphorylated tau. SPX treatment did not affect the steady-state levels of neither the M1 and M2 muscarinic nor the α7 nicotinic acetylcholine receptors (AChRs), while it decreased the amplitude of acetylcholine-evoked responses and increased ACh (acetylcholine) levels in 3xTg neurons. Additionally, SPX treatment decreased the levels of two protein kinases involved in tau phosphorylation, glycogen synthase kinase 3β (GSK-3β) and extracellular-regulated kinase (ERK). Also SPX abolished the glutamate-induced neurotoxicity in both control and 3xTg neurons. The results presented here constitute the first report indicating that exposure of 3xTg neurons to nontoxic concentrations of SPX produces a simultaneous reduction in the main pathological characteristics of AD. In spite of the few reports analyzing the mode of action of the toxin we suggest that SPX could ameliorate AD pathology increasing the intracellular ACh levels and simultaneously diminishing the levels of kinases involved in tau phosphorylation.  相似文献   

3.
4.
5.
Zhang C  Chen P  Fei Y  Liu B  Ma K  Fu X  Zhao Z  Sun T  Sheng Z 《Aging cell》2012,11(1):14-23
Aged epidermal cells have the capacity to dedifferentiate into stem cell-like cells. However, the signals that regulate the dedifferentiation of aged epidermal cells remain unclear. Here, we provide evidence that Wnt/β-catenin is critical for aged epidermal cell dedifferentiation in vivo and in vitro. Some aged epidermal cells in human ultrathin epidermal sheets lacking basal stem cells transplanted onto wounds dedifferentiated into stem cell-like cells that were positive for CK19 and β1 integrin but negative for CK10. In addition, Wnt/β-catenin pathway was activated during this process. There was increased expression of Wnt-1, Wnt-4, Wnt-7a, β-catenin, cyclin D1, and c-myc. Secreted frizzled-related protein 1, a Wnt/β-catenin pathway inhibitor, blocked dedifferentiation in vivo. Then, the activator, a highly specific glycogen synthase kinase (GSK)-3β inhibitor, of Wnt/β-catenin pathway was added to the culture medium of aged epidermal cells. Surprisingly, we found that the activator induced higher expression of CK19, β1 integrin, Oct4, and Nanog proteins. The induced aged epidermal cells exhibited high colony-forming efficiency, long-term proliferative potential and could regenerate a skin equivalent (as do epidermal stem cells). These results suggested that activation of Wnt/β-catenin pathway induced the dedifferentiation of aged epidermal cells, which suggest a new approach to generate epidermal stem cell-like cells.  相似文献   

6.
The time evolution of the size distributions of (fully branched and debranched) starch molecules during in vivo and in vitro digestion was analyzed using size exclusion chromatography (SEC) and compared. In vivo digesta were collected from the small intestine of pigs fed with raw normal maize starch; in vitro digestion was carried out on the same diet fed to the pigs using a method simulating digestion in the mouth, stomach, and small intestine. A qualitative difference was observed between the in vitro and the in vivo digestion. The former showed a degradation of starch molecules to a more uniform size, whereas the in vivo digestion preserved the size distribution of native starch before producing a multimodal distribution, the heterogeneous nature of which current in vitro methods do not reproduce. The use of in vitro digestion to infer in vivo digestion patterns and, hence, potential nutrition benefits need to take account of this phenomenon.  相似文献   

7.
The thiazolidedione (TZD) class of drugs is clinically approved for the treatment of type 2 diabetes. The therapeutic actions of TZDs are mediated via activation of peroxisome proliferator-activated receptor γ (PPARγ). Despite their widespread use, concern exists regarding the safety of currently used TZDs. This has prompted the development of selective PPARγ modulators (SPPARMs), compounds that promote glucose homeostasis but with reduced side effects due to partial PPARγ agonism. However, this also results in partial agonism with respect to PPARγ target genes promoting glucose homeostasis. Using a gene expression-based screening approach we identified N-acetylfarnesylcysteine (AFC) as both a full and partial agonist depending on the PPARγ target gene (differential SPPARM). AFC activated PPARγ as effectively as rosiglitazone with regard to Adrp, Angptl4, and AdipoQ, but was a partial agonist of aP2, a PPARγ target gene associated with increased adiposity. Induction of adipogenesis by AFC was also attenuated compared with rosiglitazone. Reporter, ligand binding assays, and dynamic modeling demonstrate that AFC binds and activates PPARγ in a unique manner compared with other PPARγ ligands. Importantly, treatment of mice with AFC improved glucose tolerance similar to rosiglitazone, but AFC did not promote weight gain to the same extent. Finally, AFC had effects on adipose tissue remodeling similar to those of rosiglitazone and had enhanced antiinflammatory effects. In conclusion, we describe a new approach for the identification of differential SPPARMs and have identified AFC as a novel class of PPARγ ligand with both full and partial agonist activity in vitro and in vivo.  相似文献   

8.
9.
The apoptosis program of physiological cell death elicits a range of non-phlogistic homeostatic mechanisms—“recognition, response and removal”—that regulate the microenvironments of normal and diseased tissues via multiple modalities operating over short and long distances. The molecular mechanisms mediate intercellular signaling through direct contact with neighboring cells, release of soluble factors and production of membrane-delimited fragments (apoptotic bodies, blebs and microparticles) that allow for interaction with host cells over long distances. These processes effect the selective recruitment of mononuclear phagocytes and the specific activation of both phagocytic and non-phagocytic cells. While much evidence is available concerning the mechanisms underlying the recognition and responses of phagocytes that culminate in the engulfment and removal of apoptotic cell bodies, relatively little is yet known about the non-phagocytic cellular responses to the apoptosis program. These responses regulate inflammatory and immune cell activation as well as cell fate decisions of proliferation, differentiation and death. Here, we review current knowledge of these processes, considering especially how apoptotic cells condition the microenvironments of normal and malignant tissues. We also discuss how apoptotic cells that persist in the absence of phagocytic clearance exert inhibitory effects over their viable neighbors, paying particular attention to the specific case of cell cultures and highlighting how new cell-corpse-clearance devices—Dead-Cert® Nanoparticles—can significantly improve the efficacy of cell cultures through effective removal of non-viable cells in the absence of phagocytes in vitro.  相似文献   

10.
11.
12.
The construction of SP6-derived expression plasmids that encode normal and modified -conglycinin subunits is described. With the exception of an additional methionine at their NH2-terminal ends and the lack of glycans, the normal subunits synthesized at the direction of these plasmids coresponded to mature and subunits isolated from soybean seeds. The subunits assembled into trimers in vitro that were equivalent in size to those formed in vivo. This result shows that the glycans are not required either for protein folding or oligomer assembly. Subunits produced from other plasmids, which had modifications in a highly conserved hydrophobic region in the COOH-terminal end of the subunits, either did not assemble or assembled at an extremely low rate compared to unmodified subunits. Structural changes at the more hydrophilic NH2-terminal end had mixed effects. Several subunits modified in this region assembled into trimers at rates that were either equal or greater than those for normal subunits. Others assembled less completely than the normal subunits. Our results indicate that the in vitro synthesis and assembly assay will be useful in evaluating structure-function relationships in modified -conglycinin subunits. The results also show that structural changes at the NH2-terminal end of the subunits are tolerated to a greater extent than modifications in the hydrophobic conserved region in the COOH-terminal half of the subunits, and this information will be useful in efforts to improve soybean quality.  相似文献   

13.
Accumulation of misfolded α-synuclein in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD). To identify ligands having high binding potency toward aggregated α-synuclein, we synthesized a series of phenothiazine derivatives and assessed their binding affinity to recombinant α-synuclein fibrils using a fluorescent thioflavin T competition assay. Among 16 new analogues, the in vitro data suggest that compound 11b has high affinity to α-synuclein fibrils (K(i)=32.10 ± 1.25 nM) and compounds 11d, 16a and16b have moderate affinity to α-synuclein fibrils (K(i)≈50-100 nM). Further optimization of the structure of these analogues may yield compounds with high affinity and selectivity for aggregated α-synuclein.  相似文献   

14.
For many years, zinc salts have been used both topically and orally to treat minor burns and abrasions as well as to enhance wound repair in man and animals. In this study we describe the protective effects of zinc against UV-induced genotoxicity in vitro and against sunburn cell formation in mouse skin in vivo. Cultured skin cells from neonatal mice showed a dramatic increase in the number of micronuclei as a result of UVA and UVB irradiation. Inclusion of zinc at 5 μg/mL in the medium significantly reduced the frequency of micronuclei and of micronucleated cells. In hairless mice, topical application of zinc chloride for 5 consecutive days or a single application 2 h prior to UV exposure reduced the number of sunburn cells in the epidermis as did application of zinc 1 h after exposure. Application 2 h after irradiation also tended to have a protective effect, although there was a large variation between animals. It is proposed that an influx of zinc can protect epidermal cells against some of the more delayed effects of UV-induced damage.  相似文献   

15.

Background

Hypoxia inducible factor-1α (HIF-1α) is responsible for the majority of HIF-1-induced gene expression changes under hypoxia and for the “angiogenic switch” during tumor progression. HIF-1α is often upregulated in tumors leading to more aggressive tumor growth and chemoresistance, therefore representing an important target for antitumor intervention. We previously reported that zinc downregulated HIF-1α levels. Here, we evaluated the molecular mechanisms of zinc-induced HIF-1α downregulation and whether zinc affected HIF-1α also in vivo.

Methodology/Principal Findings

Here we report that zinc downregulated HIF-1α protein levels in human prostate cancer and glioblastoma cells under hypoxia, whether induced or constitutive. Investigations into the molecular mechanisms showed that zinc induced HIF-1α proteasomal degradation that was prevented by treatment with proteasomal inhibitor MG132. HIF-1α downregulation induced by zinc was ineffective in human RCC4 VHL-null renal carcinoma cell line; likewise, the HIF-1αP402/P564A mutant was resistant to zinc treatment. Similarly to HIF-1α, zinc downregulated also hypoxia-induced HIF-2α whereas the HIF-1β subunit remained unchanged. Zinc inhibited HIF-1α recruitment onto VEGF promoter and the zinc-induced suppression of HIF-1-dependent activation of VEGF correlated with reduction of glioblastoma and prostate cancer cell invasiveness in vitro. Finally, zinc administration downregulated HIF-1α levels in vivo, by bioluminescence imaging, and suppressed intratumoral VEGF expression.

Conclusions/Significance

These findings, by demonstrating that zinc induces HIF-1α proteasomal degradation, indicate that zinc could be useful as an inhibitor of HIF-1α in human tumors to repress important pathways involved in tumor progression, such as those induced by VEGF, MDR1, and Bcl2 target genes, and hopefully potentiate the anticancer therapies.  相似文献   

16.
A variety of methods have been developed to amplify DNA and RNA. These methods vary in their susceptibility to evolve new molecular species differing from the starting template. PCR is exceptionally resistant to in vitro evolution, whereas methods such as Q replicase and 3SR are much less robust. This paper develops some simple mathematical models which suggest that PCR is resistant to in vitro evolution because the reaction controls replication in discrete cycles: fast replication is of little advantage during PCR because the reaction limits fast replicators as well as slow ones to a single copy per cycle. In contrast, continuous (isothermal) reactions, as in the Q replicase reaction, favor fast replicators. The advantage of fast replication is compounded in continuous reactions, because a fast replicator can complete many generations of replication during the time it takes a slow replicator to complete one generation. These models suggest that continuous amplication protocols will never achieve the robustness against in vitro evolution observed with PCR.Correspondence to: J.J. Bull  相似文献   

17.
18.
19.
From in vitro studies involving multilamellar liposomes or other artificial systems, several groups of workers have deduced that Trolox (a water-soluble analogue of vitamin E) and ascorbate are synergistic antioxidants. Here, we demonstrate that while Trolox and ascorbate individually protect cultured hepatocytes against oxyradicals generated either with xanthine oxidase plus hypoxanthine or with hydrogen peroxide, the two antioxidants do not appear to be synergistic when used in equimolar combinations. Also, in a rat model of hepatic ischemia-reperfusion, we observed that infusion of Trolox or ascorbate (7.5-10 mumol/kg body weight) into the postischemic liver reduced the reperfusion injury by 76 or 67%, respectively. However, when both compounds were used together (each at the same dose as used separately), the organ salvage amounted to only 79%. Therefore, there is no evidence of synergism between Trolox and ascorbate in our in vitro and especially in vivo systems.  相似文献   

20.
Perchloroethylene (PCE) was tested in a diploid strain (D7) of the yeast Saccharomyces cerevisiae in suspension tests with and without a mammalian microsomal activation system (S9) and ‘in vivo’ by the intrasanguineous host-mediated assay. In addition, enzyme alteration studies were performed in mice non-pretreated or pretreated with phenobarbital + β-naphthoflavone. PCE did not induce any genetic effect either ‘in vitro’ or ‘in vivo’. In the suspension test, PCE was more toxic without metabolic activation and less toxic with mammalian microsomal activation. The enzymatic determinations showed an increase of the aminopyrine demethylase activity and of the level of cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号