首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocilin is a 55-57-kDa protein that is a member of the olfactomedin protein family. It is expressed in the cornea, sclera and trabecular network of the eye, myelinated peripheral nerves, heart, skeletal muscle, trachea and other tissues. Myocilin binds to a domain of fibronectin, type IV collagen and laminen in the trabecular meshwork of the eye, and its expression is influenced by transforming growth factor beta. Because these extracellular matrix components also are common in the intervertebral disc, the objective of our study was to determine whether the matricellular protein myocilin could be detected in the human or sand rat intervertebral disc using immunohistochemistry and to assess its localization. We investigated 16 specimens of human disc tissue and discs from six sand rats. Three human disc cell cultures grown in three-dimensional culture also were evaluated. Immunocytochemical annulus analysis showed the presence of myocilin within the disc cell cytoplasm in some, but not all, cells. Extracellular matrix in both the human and sand rat disc was negative for myocilin localization. Myocilin is believed to play a role in cell-cell adhesion and/or signaling. Myocilin may have such functions within the disc cell population in a manner similar to tenascin, SPARC and thrombospondin, which are other matricellular proteins recently shown to be present in the disc.  相似文献   

2.
Myocilin is a 55-57-kDa protein that is a member of the olfactomedin protein family. It is expressed in the cornea, sclera and trabecular network of the eye, myelinated peripheral nerves, heart, skeletal muscle, trachea and other tissues. Myocilin binds to a domain of fibronectin, type IV collagen and laminen in the trabecular meshwork of the eye, and its expression is influenced by transforming growth factor beta. Because these extracellular matrix components also are common in the intervertebral disc, the objective of our study was to determine whether the matricellular protein myocilin could be detected in the human or sand rat intervertebral disc using immunohistochemistry and to assess its localization. We investigated 16 specimens of human disc tissue and discs from six sand rats. Three human disc cell cultures grown in three-dimensional culture also were evaluated. Immunocytochemical annulus analysis showed the presence of myocilin within the disc cell cytoplasm in some, but not all, cells. Extracellular matrix in both the human and sand rat disc was negative for myocilin localization. Myocilin is believed to play a role in cell-cell adhesion and/or signaling. Myocilin may have such functions within the disc cell population in a manner similar to tenascin, SPARC and thrombospondin, which are other matricellular proteins recently shown to be present in the disc.  相似文献   

3.
Intervertebral disc degeneration (IVDD) is the most critical factor that causes low back pain. Molecular biotherapy is a fundamental strategy for IVDD treatment. Calcitonin can promote the proliferation of chondrocytes, stimulate the synthesis of matrix and prevent cartilage degeneration. However, its effect and the underlying mechanism for IVDD have not been fully revealed. Chondrogenic specific matrix components’ mRNA expression of nucleus pulposus cell (NPC) was determined by qPCR. Protein expression of NPC matrix components and protein kinase C was determined by Western blotting. A rat caudal intervertebral disc degeneration model was established and tested for calcitonin in vivo. IL‐1 induced NPC change via decreasing protein kinase C (PKC)‐ε phosphorylation, while increasing PKC‐δ phosphorylation. Calcitonin treatment could prevent or reverse IL‐1‐induced cellular change on PKC signalling associated with degeneration. The positive effect of calcitonin on IVDD in vivo was verified on a rat caudal model. In summary, this study, for the first time, elucidated the important role of calcitonin in the regulation of matrix components in the nucleus of the intervertebral disc. Calcitonin can delay degeneration of the intervertebral disc nucleus by activating the PKC‐ε pathway and inhibiting the PKC‐δ pathway.  相似文献   

4.
Matrix metalloproteinases (MMPs) degrade components of the extracellular matrix of the disc, but the presence of MMP-19 has not been explored. In other tissues, MMP-19 is known to act in proteolysis of the insulin-like growth factor (IGF) binding protein-3, thereby exposing this protein to make it available to influence cell behavior. MMP-19 also has been shown to inhibit capillary-like formation and thus play a role in the avascular nature of the disc. Using immunohistochemistry, normal discs from six subjects aged newborn through 10 years and 20 disc specimens from control donors or surgical patients aged 15-76 (mean age 40.2 years) were examined for immunolocalization of MMP-19; six Thompson grade I discs, five Thompson grade II, eight Thompson grade III, five Thompson grade IV, and one Thompson grade V discs were analyzed. The results indicate that in discs from young subjects, MMP-19 was uniformly localized in the outer annulus. In discs from adult donors and surgical patients, outer and inner annulus cells only occasionally showed MMP-19 localization. The greatest expression of MMP-19 was observed in young discs, and little expression was seen in older or degenerating discs. Because MMP-19 has been shown to regulate IGF-mediated proliferation in other tissues, its decline in the aging/degenerating disc may contribute to the age-related decrease in disc cell numbers.  相似文献   

5.
Intervertebral disc (IVD) degeneration is strongly associated with chronic low back pain, one of the most common causes of morbidity in the West. While normal healthy IVD is avascular, angiogenesis is a constant feature of IVD degeneration and has been shown to be associated with in-growth of nerves. Connective tissue growth factor (CTGF) plays a pivotal role in angiogenesis. To investigate the expression of CTGF in both normal and degenerated IVD, 21 IVDs were obtained from patients at surgery or postmortem examination and grouped according to the severity of histological degeneration. The immunohistochemical expression of CTGF was correlated with the degree of degeneration. CD31 immunohistochemistry was used to correlate IVD degeneration with vasculature. Our results showed that CTGF is expressed in non-degenerated and degenerated human IVDs and increased expression of CTGF is associated with degenerated discs, particularly within areas of neovascularization. We suggest that CTGF may play a role in angiogenesis in the human degenerated IVD.  相似文献   

6.
In this study, we used microarray analysis to investigate the biogenesis and progression of intervertebral disc degeneration. The gene expression profiles of 37 disc tissue samples obtained from patients with herniated discs and degenerative disc disease collected by the National Cancer Institute Cooperative Tissue Network were analyzed. Differentially expressed genes between more and less degenerated discs were identified by significant analysis of microarray. A total of 555 genes were significantly overexpressed in more degenerated discs with a false discovery rate of < 3%. Functional annotation showed that these genes were significantly associated with membrane-bound vesicles, calcium ion binding and extracellular matrix. Protein-protein interaction analysis showed that these genes, including previously reported genes such as fibronectin, COL2A1 and β-catenin, may play key roles in disc degeneration. Unsupervised clustering indicated that the widely used morphology-based Thompson grading system was only marginally associated with the molecular classification of intervertebral disc degeneration. These findings indicate that detailed, systematic gene analysis may be a useful way of studying the biology of intervertebral disc degeneration.  相似文献   

7.
Despite numerous studies on pulsed electromagnetic field (PEMF) application, its effects of PEMF on intervertebral disc (IVD) have not yet been investigated in vivo. Accordingly, the effects of PEMF upon IVD in rats were evaluated through molecular surveys. Rats were divided into six groups: Group I and II were exposed to low and high frequency of PEMF (LF and HF, respectively). Group III and IV underwent induced disc degeneration and were exposed to low and high frequency of PEMF (LF/IDD and HF/IDD, respectively). Group V underwent induced disc degeneration (IDD), and group VI was control. The values of caspase 3, Bax, Bcl-2 and β-actin band density, as cell apoptotic markers, were obtained from band densitometry. Our results showed that the value of cleaved caspase-3 of cells and Bax/Bcl-2 ratio in IDD group increased significantly compared to the control group (p?p?相似文献   

8.
Spondylosis in the desert sand rat (Psammomys obesus) has been studied as a model for intervertebral disc degeneration. Reducing sugars, which react with protein amino groups to form a diverse group of moieties with fluorescence and cross-linking properties, have been implicated in the structural and functional alterations of proteins that occur during aging and long-term diabetes. This study was undertaken to determine the changes in two matrix cross-links of the intervertebral disc and to study their association with aging. Two types of cross-links were studied: the physiological cross-link, pyridinoline, which is initiated by lysyl oxidase; and the non-enzymatically initiated cross-link, pentosidine. A significant increase in pentosidine, but not pyridinoline, was observed in the intervertebral disc with aging. Radiological, histological and biochemical findings support a hypothesis that subchondral bone responses, marked by increased bone density, contribute to alterations in the intervertebral disc. Cross-link changes in the structural proteins of the disc may contribute to the progressive fibrocartilage degradation typical of intervertebral disc disease as an effect of age.  相似文献   

9.
The rough endoplasmic reticulum (rER) of the cell has an architectural editing function that checks whether protein structure and three-dimensional assembly have occurred properly prior to export of newly synthesized material out of the cell. If these have been faulty, the material is retained within the rER as an inclusion body. Inclusion bodies have been identified previously in chondrocytes and osteoblasts in chondrodysplasias and osteogenesis imperfecta. Inclusion bodies in intervertebral disc cells, however, have only recently been recognized. Our objectives were to use transmission electron microscopy to analyze more fully inclusion bodies in the annulus pulposus and to study the extracellular matrix (ECM) surrounding cells containing inclusion bodies. ECM frequently encapsulated cells with inclusion bodies, and commonly contained prominent banded aggregates of Type VI collagen. Inclusion body material had several morphologies, including relatively smooth, homogeneous material, or a rougher, less homogeneous feature. Such findings expand our knowledge of the fine structure of the human disc cell and ECM during disc degeneration, and indicate the potential utility of ultrastructural identification of discs with intracellular inclusion bodies as a screening method for molecular studies directed toward identification of defective gene products in degenerating discs.  相似文献   

10.
Intervertebral disc degeneration (IDD) is induced by multiple factors including increased apoptosis, decreased survival, and reduced extracellular matrix (ECM) synthesis in the nucleus pulposus (NP) cells. The tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is the only known lipid phosphatase counteracting the PI3K/AKT pathway. Loss of PTEN leads to activated PI3K/AKT signaling, which plays a key role in a variety of cancers. However, the role of PTEN/PI3K/AKT signaling nexus in IDD remains unknown. Here, we report that PTEN is overexpressed in degenerative NP, which correlates with inactivated AKT. Using the PTEN knockdown approach by lentivirus‐mediated short interfering RNA gene transfer technique, we report that PTEN decreases survival but induces apoptosis and senescence of NP cells. PTEN also inhibits expression and production of ECM components including collagen II, aggrecan, and proteoglycan. Furthermore, PTEN modulates the expression of ECM regulatory molecules SOX‐9 and matrix metalloproteinase‐3 (MMP‐3). Using small‐molecule AKT inhibitor GDC‐0068, we confirm that PTEN regulates NP cell behaviors through its direct targeting of PI3K/AKT. These findings demonstrate for the first time that PTEN/PI3K/AKT signaling axis plays an important role in the pathogenesis of IDD. Targeting PTEN using gene therapy may represent a promising therapeutic approach against disc degenerative diseases.  相似文献   

11.
It is obvious that epigenetic processes influence the evolution of intervertebral disc degeneration (IDD). However, its molecular mechanisms are poorly understood. Therefore, we tested the hypothesis that IGFBP5, a potential regulator of IDD, modulates IDD via the ERK signalling pathway. We showed that IGFBP5 mRNA was significantly down‐regulated in degenerative nucleus pulposus (NP) tissues. IGFBP5 was shown to significantly promote NP cell proliferation and inhibit apoptosis in vitro, which was confirmed by MTT, flow cytometry and colony formation assays. Furthermore, IGFBP5 was shown to exert its effects by inhibiting the ERK signalling pathway. The effects induced by IGFBP5 overexpression on NP cells were similar to those induced by treatment with an ERK pathway inhibitor (PD98059). Moreover, qRT‐PCR and Western blot analyses were performed to examine the levels of apoptosis‐related factors, including Bax, caspase‐3 and Bcl2. The silencing of IGFBP5 up‐regulated the levels of Bax and caspase‐3 and down‐regulated the level of Bcl2, thereby contributing to the development of human IDD. Furthermore, these results were confirmed in vivo using an IDD rat model, which showed that the induction of Igfbp5 mRNA expression abrogated the effects of IGFBP5 silencing on intervertebral discs. Overall, our findings elucidate the role of IGFBP5 in the pathogenesis of IDD and provide a potential novel therapeutic target for IDD.  相似文献   

12.
Lower back pain due to intervertebral disc (IVD) degeneration is a prevalent problem which drastically affects the quality of life of millions of sufferers. Healthy IVDs begin with high populations of notochordal cells in the nucleus pulposus, while by the second stage of degeneration, these cells will be replaced by chondrocyte-like cells. Because the IVD is avascular, these cells rely on passive diffusion of nutrients to survive. It is thought that this transition in cell phenotype causes the shift of the IVD's physical properties, which impede the flow of nutrients. Our computational model of the IVD illustrates its ability to simulate the evolving chemical and mechanical environments occurring during the early ageing process. We demonstrate that, due to the insufficient nutrient supply and accompanying changes in physical properties of the IVD, there was a resultant exponential decay in the number of notochordal cells over time.  相似文献   

13.
Abstract

Periostin, a matricellular protein in the fasciclin family, is expressed in tissues subjected to constant mechanical stress. Periostin modulates cell-to-extracellular matrix interactions and can bind to collagen, fibronectin, tenascin-C and several integrins. Our objective was to evaluate whether periostin is expressed in the human intervertebral disc. Immunohistochemical localization of periostin was carried out in tissue of human lumbar discs and lumbar discs of the sand rat (Psammomys obesus). Human discs also were examined for periostin gene expression. Immunohistochemical localization demonstrated periostin in the cytoplasm of annulus and nucleus cells, and occasionally in the surrounding pericellular and interterritorial extracellular matrix. Periostin distribution in the human disc was distinctive. Outer annulus contained the highest proportion of periostin-positive cells (88.8%), whereas inner annulus contained only 61.4%. The nucleus pulposus contained the fewest periostin-positive cells (18.5%). There was a significant negative correlation between the percentage of cells positive for periostin in the inner annulus and subject age. Periostin gene expression in the human disc also was confirmed using molecular microarray analysis. Because work by others has shown that periostin plays an important role in the biomechanical properties of other connective tissues (skin, tendon, heart valves), future research is needed to elucidate the role of periostin in disc, loading, aging and degeneration.  相似文献   

14.
Rejuvenation of nucleus pulposus cells (NPCs) in degenerative discs can reverse intervertebral disc degeneration (IDD). Partial reprogramming is used to rejuvenate aging cells and ameliorate progression of aging tissue to avoiding formation of tumors by classical reprogramming. Understanding the effects and potential mechanisms of partial reprogramming in degenerative discs provides insights for development of new therapies for IDD treatment. The findings of the present study show that partial reprogramming through short‐term cyclic expression of Oct‐3/4, Sox2, Klf4, and c‐Myc (OSKM) inhibits progression of IDD, and significantly reduces senescence related phenotypes in aging NPCs. Mechanistically, short‐term induction of OSKM in aging NPCs activates energy metabolism as a “energy switch” by upregulating expression of Hexokinase 2 (HK2) ultimately promoting redistribution of cytoskeleton and restoring the aging state in aging NPCs. These findings indicate that partial reprogramming through short‐term induction of OSKM has high therapeutic potential in the treatment of IDD.  相似文献   

15.
16.
17.
Intervertebral disc degeneration (IDD) is a complicated disease in patients. The pathogenesis of IDD encompasses cellular oxidative stress, mitochondrion dysfunction and apoptosis. Melatonin eliminates oxygen free radicals, regulates mitochondrial homoeostasis and function, stimulates mitophagy and protects against cellular apoptosis. Therefore, we hypothesize that melatonin has beneficial effect on IDD by mitophagy stimulation and inhibition of apoptosis. The effects of melatonin on IDD were investigated in vitro and in vivo. For the former, melatonin diminished cellular apoptosis caused by tert‐butyl hydroperoxide in nucleus pulposus (NP) cells. Mitophagy, as well as its upstream regulator Parkin, was activated by melatonin in both a dose and time‐dependent manner. Mitophagy inhibition by cyclosporine A (CsA) partially eliminated the protective effects of melatonin against NP cell apoptosis, suggesting that mitophagy is involved in the protective effect of melatonin on IDD. In addition, melatonin was demonstrated to preserve the extracellular matrix (ECM) content of Collagen II, Aggrecan and Sox‐9, while inhibiting the expression of matrix degeneration enzymes, including MMP‐13 and ADAMTS‐5. In vivo, our results demonstrated that melatonin treatment ameliorated IDD in a puncture‐induced rat model. To conclude, our results suggested that melatonin protected NP cells against apoptosis via mitophagy induction and ameliorated disc degeneration, providing the potential therapy for IDD.  相似文献   

18.
As a chronic musculoskeletal degeneration disease, intervertebral disc degeneration (IVDD) has been identified as a crucial cause for low back pain. This condition has a prevalence of 80% among adults without effective preventative therapy. Procyanidin B3 (Pro-B3) is a procyanidin dimer, which is widely present in the human diet and has multiple functions, such as preventing inflammation. But the inhibiting effect of Pro-B3 in IVDD development is still no known. Thus, our study aimed to demonstrate the therapeutical effect of Pro-B3 in IVDD and explain the underlying mechanism. In vitro studies, human nucleus pulposus (NP) cells were isolated and exposed in lipopolysaccharide (LPS) to simulate IVDD development. Pro-B3 pre-treatment inhibited LPS-induced production of inflammation correlated factors such as tumour necrosis factor α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2) and Nitric oxide (NO). On the other hand, LPS-medicated extracellular matrix (ECM) breakdown was blocked in Pro-B3 treated NP cells. Additionally, Pro-B3 treatment blocked the activation of NF-κB/toll-like receptor 4 pathway in LPS-exposed NP cells. Mechanistically, Pro-B3 could occupy MD-2's hydrophobic pocket exhibiting high affinity for LPS to intervene LPS/TLR4/MD-2 complex formation. In vivo, Pro-B3 treatment prevented the loss of gelatin NP cells and structural damage of annulus fibrosus in rat IVDD model. In brief, Pro-B3 is considered to be a treatment agent for IVDD.  相似文献   

19.
椎间盘退变是腰痛发生的主要原因,严重影响了人们的生活和工作。尽管具体发病机制尚不明确,但近年来其相关动物模型的研究有了很大的进步。造模方法包括结构损伤、应力改变及基因敲除等,本文综述并讨论了这些方法的优缺点和应用方向,以期为后续的研究奠定理论基础。  相似文献   

20.
Within the tumor microenvironment is a dynamic exchange between cancer cells and their surrounding stroma. This complex biologic system requires carefully designed models to understand the role of its stromal components in carcinogenesis, tumor progression, invasion, and metastasis. Secreted protein acidic and rich in cysteine (SPARC) is a prototypic matricellular protein at the center of this exchange. Two decades of basic science research combined with recent whole genome analyses indicate that SPARC is an important player in vertebrate evolution, normal development, and maintenance of normal tissue homeostasis. Therefore, SPARC might also play an important role in the tumor microenvironment. Clinical evidence indicates that SPARC expression correlates with tumor progression, but tightly controlled animal models have shown that the role of SPARC in tumor progression is dependent on tissue and tumor cell type. In this Prospectus, we review the current understanding of SPARC in the tumor microenvironment and discuss current and future investigations of SPARC and tumor-stromal interactions that require careful consideration of growth factors, cytokines, proteinases, and angiotropic factors that might influence SPARC activity and tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号