首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
The Rab3 family small G proteins (Rab3A-D) are involved in the regulated secretory pathway of brain and secretory tissues. Among Rab3-interacting proteins, Rabphilin-3, Rim, and Noc2, all of which contain a conserved Rab3-binding domain (RBD3), are generally recognized Rab3 effector proteins in neurons and secretory cells. Although Rab3B was also detected in epithelial cells, its function remained unknown. We isolated cDNA sequences from human epithelial Caco2-cell mRNA by degenerate RT-PCR based on the conserved amino acid sequence of RBD3. Multiple cDNA clones were identified as encoding Noc2. Northern blot analysis revealed that Noc2 mRNA was expressed not only in secretory tissues but also in epithelial tissues and cell lines. A pull-down assay demonstrated that Noc2 bound to Rab3B in a GTP-dependent manner. When Noc2 was co-expressed with the GTP-bound form of Rab3B, it was recruited from the cytosol to perinuclear membranes. Furthermore, overexpression of Noc2 inhibited the cell-surface transport of basolateral vesicular stomatitis virus glycoprotein. These results suggest that Noc2 functions as a potential Rab3B effector protein in epithelial cells.  相似文献   

3.
Rab proteins are GTPases that transit between GTP- and GDP-bound states. In the GTP-bound form they can recruit specific effector to membrane domains. It is possible that the exchange of Rab effectors between membranes and cytosol would be determined by the exchange of the particular Rab partner. We have compared the cycling of three Rab3/27 effectors, Granuphilin, Noc2, and Rabphilin, in PC12 cells using fluorescence recovery after photobleaching of EGFP-tagged proteins. All three effectors become localised to secretory granules. Granuphilin and Noc2 showed little or no exchange between secretory granules and cytosol whereas Rabphilin showed rapid and complete exchange. Both Noc2 and Rabphilin were found to be recruited to granules by Rab27 but the data suggest that Rabphilin did not form stable complexes with Rab27 on secretory granules and so Rab effector cycling between membranes and cytosol can be independent of that of the Rab protein.  相似文献   

4.
The expression of several isoforms of the small-molecular-weight Rab3 GTP-binding proteins is a characteristic feature of all cell types undergoing regulated exocytosis, in which Rab3 proteins are considered to regulate the assembly/disassembly of a fusion complex between granule and plasma membrane in a positive and negative manner through interaction with effector proteins. The pattern of Rab3 protein expression may, therefore, provide a subtle means of regulating exocytosis. To investigate the relationship between Rab3 expression and secretory activity, we assessed the differential expression of individual Rab3 proteins in high- and low-secreting clones of the rat basophilic (RBL) cell line. mRNAs for Rab3 isoforms (a-d) were analyzed by constructing cDNA libraries of high- and low-secreting RBL clones. The relative abundance of mRNAs for Rab3 isoforms was initially determined from the clonal frequency of corresponding cDNA clones. RT-PCR using isoform-specific primers was successfully applied to the quantitation of Rab3a mRNA. The presence of individual Rab3 proteins was revealed by SDS-PAGE and immunoblotting, and also by in situ immunofluorescence confocal microscopy. We present evidence that Rab3a and Rab3c are expressed at high levels in the low-secreting variant, while Rab3d is predominant in the high secretor. Levels of the Rab3 effector proteins, Rabphilin and Noc2, are similar in both RBL cell lines. Subcellular fractionation of unstimulated high and low secretor RBL clones revealed that in both cell types Rab3a has a cytoplasmic location while Rab3d is present in a membrane/organelle fraction containing secretory vesicles. Differences in the pattern of expression of Rab3 isoforms in the two RBL cell lines and their localisation may influence the secretory potential. Furthermore, the presence of Rab3 and effector proteins indicates that the mechanism for regulated exocytosis in cells of mast cells/basophil lineage appears similar to that in pre-synaptic vesicles and pancreatic beta-cells.  相似文献   

5.
Rab proteins comprise a family of GTPases, conserved from yeast to mammals, which are integral components of membrane trafficking pathways. Rab3A is a neural/neuroendocrine-specific member of the Rab family involved in Ca(2+) -regulated exocytosis, where it functions in an inhibitory capacity controlling recruitment of secretory vesicles into a releasable pool at the plasma membrane. The effector by which Rab3A exerts its inhibitory effect is unclear as the Rab3A effectors Rabphilin and RIM have been excluded from for this role. One putative Rab3A effector in dense-core granule exocytosis is the cytosolic zinc finger protein, Noc2. We have established that overexpression of Noc2 in PC12 cells has a direct inhibitory effect upon Ca(2+)-triggered exocytosis in permeabilized cells. We demonstrate specific nucleotide-dependent binding of Noc2 to Rab3A and show that the inhibition of exocytosis is dependent upon this interaction since Rab3A binding-deficient mutants of Noc2 do not inhibit exocytosis. We propose that Noc2 may be a negative effector for Rab3A in regulated exocytosis of dense-core granules from endocrine cells.  相似文献   

6.
Rabphilin and Noc2 were originally described as Rab3A effector proteins involved in the regulation of secretory vesicle exocytosis, however, recently both proteins have been shown to bind Rab27A in vitro in preference to Rab3A (Fukuda, M. (2003) J. Biol. Chem. 278, 15373-15380), suggesting that Rab3A is not their major ligand in vivo. In the present study we showed by means of deletion and mutation analyses that rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A, not with Rab3A, in PC12 cells. Rab3A binding-defective mutants of rabphilin(E50A) and Noc2(E51A) were still localized in the distal portion of the neurites (where dense-core vesicles had accumulated) in nerve growth factor-differentiated PC12 cells, the same as the wild-type proteins, whereas Rab27A binding-defective mutants of rabphilin(E50A/I54A) and Noc2(E51A/I55A) were present throughout the cytosol. We further showed that expression of the wild-type or the E50A mutant of rabphilin-RBD, but not the E50A/I54A mutant of rabphilin-RBD, significantly inhibited high KCl-dependent neuropeptide Y secretion by PC12 cells. We also found that rabphilin and its binding partner, Rab27 have been highly conserved during evolution (from nematoda to humans) and that Caenorhabditis elegans and Drosophila rabphilin (ce/dm-rabphilin) specifically interact with ce/dm-Rab27, but not with ce/dm-Rab3 or ce/dm-Rab8, suggesting that rabphilin functions as a Rab27 effector across phylogeny. Based on these findings, we propose that the N-terminal Rab binding domain of rabphilin and Noc2 be referred to as "RBD27 (Rab binding domain for Rab27)", the same as the synaptotagmin-like protein homology domain (SHD) of Slac2-a/melanophilin.  相似文献   

7.
Regulated secretory pathways are highly developed in multicellular organisms as a means of intercellular communication. Each of these pathways harbors unique store organelles, such as granules in endocrine and exocrine tissues and melanosomes in melanocytes. It has recently been shown that the monomeric GTPase Rab27 subfamily regulates the exocytosis of these cell-specific store organelles. Furthermore, genetic alterations of Rab27a cause Griscelli syndrome in humans that manifests as pigmentary dilution of the skin and the hair and variable immunodeficiency due to defects in the transport of melanosomes in melanocytes and lytic granules in cytotoxic T-lymphocytes. Rab27 acts through organelle-specific effector proteins, such as granuphilin in pancreatic beta cells and melanophilin in melanocytes. The Rab27 and effector complex then interacts with proteins that are essential for membrane transport and fusion, such as syntaxin 1a and Munc18-1 for granuphilin and myosin Va for melanophilin. Genome information suggests that other putative Rab27 effector proteins, tentatively termed as exophilins or Slp/Slac2, are predicted to exist because these proteins share the conserved N-terminal Rab27-binding domain and show Rab27-binding activity in vitro or when overexpressed in cell lines. These findings suggest that the Rab27 subfamily regulates various exocytotic pathways using multiple organelle-specific effector proteins.  相似文献   

8.
Rabphilin, Rim, and Noc2 have generally been believed to be the Rab3 isoform (Rab3A/B/C/D)-specific effectors that regulate secretory vesicle exocytosis in neurons and in some endocrine cells. The results of recent genetic analysis of rabphilin knock-out animals, however, strongly refute this notion, because there are no obvious genetic interactions between Rab3 and rabphilin in nematoda (Staunton, J., Ganetzky, B., and Nonet, M. L. (2001) J. Neurosci. 21, 9255-9264), suggesting that Rab3 is not a major ligand of rabphilin in vivo. In this study, I tested the interaction of rabphilin, Rim1, Rim2, and Noc2 with 42 different Rab proteins by cotransfection assay and found differences in rabphilin, Rim1, Rim2, and Noc2 binding to several Rab proteins that belong to the Rab functional group III (Rab3A/B/C/D, Rab26, Rab27A/B, and Rab37) and/or VIII (Rab8A and Rab10). Rim1 interacts with Rab3A/B/C/D, Rab10, Rab26, and Rab37; Rim2 interacts with Rab3A/B/C/D and Rab8A; and rabphilin and Noc2 interact with Rab3A/B/C/D, Rab8A, and Rab27A/B. By contrast, the synaptotagmin-like protein homology domain of Slp homologue lacking C2 domains-a (Slac2-a)/melanophilin specifically recognizes Rab27A/B but not other Rabs. I also found that alternative splicing events in the first alpha-helical region (alpha(1)) of the Rab binding domain of Rim1 alter the Rab binding specificity of Rim1. Site-directed mutagenesis and chimeric analyses of Rim2 and Slac2-a indicate that the acidic cluster (Glu-50, Glu-51, and Glu-52) in the alpha(1) region of the Rab binding domain of Rim2, which is not conserved in the synaptotagmin-like pro tein homology domain of Slac2-a, is a critical determinant of Rab3A recognition. Based on these results, I propose that Rim, rabphilin, and Noc2 function differently in concert with functional group III and/or VIII Rab proteins, including Rab3 isoforms.  相似文献   

9.
The small GTPases Rab3 and Rab27 are associated with secretory granules of pancreatic beta-cells and regulate insulin exocytosis. In this study, we investigated the role of Noc2, a potential partner of these two GTPases, in insulin secretion. In the beta-cell line INS-1E wild-type Noc2, Noc265E, and Noc258A, a mutant capable of interacting with Rab27 but not Rab3, colocalized with insulin-containing vesicles. In contrast, two mutants (Noc2138S,141S and Noc2154A,155A,156A) that bind neither Rab3 nor Rab27 did not associate with secretory granules and were uniformly distributed throughout the cell cytoplasm. Overexpression of wild-type Noc2, Noc265E, or Noc258A inhibited hormone secretion elicited by insulin secretagogues. In contrast, overexpression of the mutants not targeted to secretory granules was without effect. Silencing of the Noc2 gene by RNA interference led to a strong impairment in the capacity of INS-1E cells to respond to insulin secretagogues, indicating that appropriate levels of Noc2 are essential for pancreatic beta-cell exocytosis. The defect was already detectable in the early secretory phase (0-10 min) but was particularly evident during the sustained release phase (10-45 min). Protein-protein binding studies revealed that Noc2 is a potential partner of Munc13, a component of the machinery that controls vesicle priming and insulin exocytosis. These data suggest that Noc2 is involved in the recruitment of secretory granules at the plasma membrane possibly via the interaction with Munc13.  相似文献   

10.
Slp1 is a putative Rab27 effector protein and implicated in intracellular membrane transport; however, the precise tissue distribution and function of Slp1 protein remain largely unknown. In this study we investigated the tissue distribution of Slp1 in mice and found that Slp1 is abundantly expressed in the pancreas, especially in the apical region of pancreatic acinar cells. Slp1 interacted with Rab27B in vivo and both proteins were co-localized on zymogen granules. Morphological analysis of fasted Slp1 knockout mice showed an increased number of zymogen granules in the pancreatic acinar cells, indicating that Slp1 is part of the machinery of amylase secretion by the exocrine pancreas.  相似文献   

11.
Rab proteins are Ras-like GTPases that regulate traffic along the secretory or endocytic pathways. Within the Rab family, Rab3 proteins are expressed at high levels in neurons and endocrine cells where they regulate release of dense core granules and synaptic vesicles. Immuno-electron microscopy shows that Rab3A and Rab3D can coexist on the same granule before and after docking. Using electron microscopy of transfected PC12 cells, we report that expression of wild-type Rab3A (or Rab3D) increases the total number of granules and the percentage that is docked at the plasma membrane. Mutated Rab3A N135I (or Rab3D N135I) decreases the total granule number and the fraction of granules docked to the plasma membrane. These data show that at least one of the functions of Rab3A and Rab3D proteins is to control the number of granules docked at the plasma membrane.  相似文献   

12.
Synaptotagmin-like proteins 1-4 (Slp1-4) are new members of the carboxyl-terminal-type (C-type) tandem C2 proteins and are classified as a subfamily distinct from the synaptotagmin and the Doc2 families, because the Slp family contains a unique homology domain at the amino terminus, referred to as the Slp homology domain (SHD). We previously showed that the SHD functions as a binding site for Rab27A, which is associated with human hemophagocytic syndrome (Griscelli syndrome) [J. Biol. Chem. 277 (2002) 9212; J. Biol. Chem. 277 (2002) 12432]. In the present study, we identified a novel member of the Slp family, Slp5. The same as other Slp family members, the SHD of Slp5 preferentially interacted with the GTP-bound form of Rab27A and marginally with Rab3A and Rab6A, both in vitro and in intact cells, but not with other Rabs tested (Rab1, Rab2, Rab4A, Rab5A, Rab7, Rab8, Rab9, Rab10, Rab11A, Rab17, Rab18, Rab20, Rab22, Rab23, Rab25, Rab28, and Rab37). However, unlike other members of the Slp family, expression of Slp5 mRNA was highly restricted to human placenta and liver. Expression of Slp5 protein and in vivo association of Slp5 with Rab27A in the mouse liver were further confirmed by immunoprecipitation. The results suggest that Slp5 might be involved in Rab27A-dependent membrane trafficking in specific tissues.  相似文献   

13.
14.
Fine-tuning of insulin secretion from pancreatic beta-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the beta-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3'-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters.  相似文献   

15.
The guanine nucleotide binding protein Rab8A controls the final steps of exocytosis in mammalian cells. It has been implicated in the regulation of apical protein localization in intestinal epithelial cells and ciliary biogenesis. The in vitro structural and biochemical characterization of Rab8A and its interaction with regulator and effector molecules has been hampered by its insolubility in Escherichia coli expression systems. The conventional refolding procedure is laborious and yields only minute amounts of C-terminally truncated Rab8A (Rab8A1-183: amino acids 1–183), not the full-length protein. Here, we report a method of expressing soluble, hexahistidine-tagged full-length human Rab8A from E. coli. The Rab8A gene was codon-optimized and coexpressed with bacterial GroEL and GroES chaperones. After two-step purification by Ni2+ affinity chromatography and gel filtration, Rab8A was obtained at a yield of 4 mg protein per 1 L of bacterial cell culture and a purity of >95%. The resultant protein was functionally active, as determined by GTPase activity and its interaction with the nucleotide exchange factor MSS4.  相似文献   

16.
The Rab family small G proteins regulate discrete steps in vesicular transport pathways. Recent studies indicate that one member of the Rab family, Rab27A, regulates the transport of lysosome-related organelles, such as melanosome distribution in melanocytes, lytic granule release in cytotoxic T cells, and dense granule release in platelets. Here, we have examined the involvement of Rab27A in the exocytic transport of another lysosome-related organelle, the basophilic secretory granule, in basophils. We have found that Rab27A locates on basophilic secretory granules containing histamine in rat basophilic leukemia (RBL) 2H3 cells. In addition, exogenous expression of dominant active Rab27A reduces antigen-induced histamine release from the cells. We have moreover identified Munc13-4 as a Rab27A target using a CytoTrap system and found that exogenous expression of Munc13-4 affects antigen-induced histamine release from RBL-2H3 cells. These results demonstrate that Rab27A plays a crucial role in antigen-induced histamine release from RBL-2H3 cells.  相似文献   

17.
Rab proteins belong to a subfamily of small GTP-binding protein genes of the Ras superfamily and play an important role in intracellular vesicular targeting. The presence of members of this protein family was examined in Caco-2 cells by a PCR-based strategy. Twenty-five different partial cDNA sequences were isolated, including 18 Rab protein family members. Seven novel human sequences, representing Rab2B, Rab6A', Rab6B, Rab10, Rab19B, Rab21 and Rab22A, were identified. For one clone, encoding Rab21, full-length cDNA was isolated from a Caco-2 cDNA library. Northern blot analysis showed a ubiquitous expression pattern of Rab21. To study Rab21 protein expression in Caco-2 cells, polyclonal antibodies were raised against GST-Rab21 fusion protein and characterised. The antibodies recognised Rab21 as a protein of approximately 25 kDa. Interestingly, the protein shows a general ER-like staining in nonpolarised Caco-2 cells in contrast to an apically located vesicle-like staining in polarised Caco-2 cells. Furthermore, immunohistochemical staining on human jejunal tissue showed a predominant expression of Rab21 in the epithelial cell layer with high expression levels in the apical region, whereas stem cells in the crypts were negative. We therefore suggest an alternative role for Rab21 in the regulation of vesicular transport in polarised intestinal epithelial cells.  相似文献   

18.
Recently, we identified and characterized a novel protein, granuphilin, whose domain structure is similar to that of the Rab3 effector protein rabphilin3 (J. Wang, T. Takeuchi, H. Yokota, and T. Izumi, J. Biol. Chem. 274:28542-28548, 1999). Screening its possible Rab partner by a yeast two-hybrid system revealed that an amino-terminal zinc-finger domain of granuphilin interacts with Rab27a. Granuphilin preferentially bound to the GTP form of Rab27a. Formation of the Rab27a/granuphilin complex was readily detected in the pancreatic beta cell line MIN6. Moreover, the tissue distributions of Rab27a and granuphilin are remarkably similar: both had significant and specific expression in pancreatic islets and in pituitary tissue, but no expression was noted in the brain. Analyses by immunofluorescence, immunoelectron microscopy, and sucrose density gradient subcellular fractionation showed that Rab27a and granuphilin are localized on the membrane of insulin granules. These findings suggest that granuphilin functions as a Rab27a effector protein in beta cells. Overexpression of wild-type Rab27a and its GTPase-deficient mutant significantly enhanced high K(+)-induced insulin secretion without affecting basal insulin release. Although Rab3a, another exocytotic Rab protein, has some similarities with Rab27a in primary sequence, intracellular distribution, and affinity toward granuphilin, overexpression of Rab3a caused different effects on insulin secretion. These results indicate that Rab27a is involved in the regulated exocytosis of conventional dense-core granules possibly through the interaction with granuphilin, in addition to its recently identified role in lysosome-related organelles.  相似文献   

19.
20.
Rab GTPases coordinate vesicular trafficking within eukaryotic cells by collaborating with a set of effector proteins. Rab27a regulates numerous exocytotic pathways, and its dysfunction causes the Griscelli syndrome human immunodeficiency. Exophilin4/Slp2-a localizes on phosphatidylserine-enriched plasma membrane, and its N-terminal Rab27-binding domain (RBD27) specifically recognizes Rab27 on the surfaces of melanosomes and secretory granules prior to docking and fusion. To characterize the selective binding of Rab27 to 11 various effectors, we have determined the 1.8 A resolution structure of Rab27a in complex with Exophilin4 RBD27. The effector packs against the switch and interswitch elements of Rab27a, and specific affinity toward Rab27a is modulated by a shift in the orientation of the effector structural motif (S/T)(G/L)xW(F/Y)(2). The observed structural complementation between the interacting surfaces of Rab27a and Exophilin4 sheds light on the disparities among the Rab27 effectors and outlines a general mechanism for their recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号