首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In performing in situ hybridizations, nonisotopic nucleic acid labeling coupled with colorimetric detection offers a safer, easier and more rapid alternative to using radioactively labeled nucleic acid probes and microscopic autoradiography. Whole mount in situ hybridization is also advantageous, because many samples can be processed identically and the reduced handling of specimens greatly reduces the risk of exposing tissues to RNase(s). The thickness of whole mount specimens, however, often prevents accurate determination of sites of expression within specific tissues. Although post-hybridization embedding and sectioning is a solution to this problem, the precipitate formed following the common colorimetric detection procedure is soluble in the organic solvents used for dehydration prior to embedding. We have developed a dehydration and embedding procedure that takes advantage of the compatibility of L.R. White® resin containing 10% (v/v) polyethylene glycol 400, and heat polymerized. The addition of the plasticizer allows L.R. White® embedded tissues to be sectioned at 10 μm providing excellent signal contrast.  相似文献   

2.
3.
A number of in situ hybridization protocols using digoxigenin or biotin labelled probes were assessed for viral nucleic acid detection in formalin fixed, paraffin embedded tissue. Single-step detection protocols for biotin labelled probes produced low sensitivity; however, enzyme based one-step detection protocols for digoxigenin probes produced high sensitivity for both RNA and DNA systems. For both probe types, multistep detection protocols produced equally high sensitivity. Use of an enhanced APAAP procedure for digoxigenin labelled probes acheived maximal sensitivity without use of biotin-streptavidin reactions. The sensitivity of nucleic acid detection obtained with a digoxigenin labelled probe is comparable to that obtained using biotin. Digoxigenin labelled probes for nucleic acid detection are recommended for tissues with endogenous biotin.  相似文献   

4.
A nanodiagnostic method using nucleic acid sequence-based amplification (NASBA) and gold nanoparticle probes (AuNP probes) was developed for colorimetric detection of Mycobacterium tuberculosis. The primers targeting 16S rRNA were used for the amplification of mycobacterial RNA by the isothermal NASBA process. The amplicons were hybridized with specific gold nanoparticle probes. The RNA–DNA hybrids were colorimetrically detected by the accumulation of gold nanoparticles. Using this method, 10 CFU ml?1 of M. tuberculosis was detected within less than 1 h. Results obtained from the clinical specimens showed 94.7% and 96% sensitivity and specificity, respectively. No interference was encountered in the amplification and detection of M. tuberculosis in the presence of non-target bacteria, confirming the specificity of the method.  相似文献   

5.
In situ hybridization (ISH) is a powerful technique for localizing specific nucleic acid sequences (DNA, RNA) in microscopic preparations of tissues, cells, chromosomes, and linear DNA fibers. To date, a wide variety of research and diagnostic applications of ISH have been described, making the technique an integral part of studies concerning gene mapping, gene expression, RNA processing and transport, the three-dimensional organization of the nucleus, tumor genetics, microbial infections, and prenatal diagnosis. In this review, I first describe the ISH procedure in short and then focus on the currently available non-radioactive probe-labeling and cytochemical detection methodologies that are utilized to visualize one or multiple different nucleic acid targets in situ with different colors. Special emphasis is placed on the procedures applying fluorescence and brightfield microscopy, the simultaneous detection of nucleic acids and proteins by combined ISH and immunocytochemistry, and, in addition, on the recent progress that has been made with the introduction of signal amplification procedures to increase the detection sensitivity of ISH. Finally, a comparison of fluorescence, enzyme cytochemical, and colloidal gold silver probe detection systems will be presented, and possible future directions of in situ nucleic acid detection will be discussed. Accepted: 9 June 1999  相似文献   

6.
Recent developments in cellular and molecular biology require the accurate quantification of DNA and RNA in large numbers of samples at a sensitivity that enables determination on small quantities. In this study, five current methods for nucleic acid quantification were compared: (i) UV absorbance spectroscopy at 260 nm, (ii) colorimetric reaction with orcinol reagent, (iii) colorimetric reaction based on diphenylamine, (iv) fluorescence detection with Hoechst 33258 reagent, and (v) fluorescence detection with thiazole orange reagent. Genomic DNA of three different microbial species (with widely different G+C content) was used, as were two different types of yeast RNA and a mixture of equal quantities of DNA and RNA. We can conclude that for nucleic acid quantification, a standard curve with DNA of the microbial strain under study is the best reference. Fluorescence detection with Hoechst 33258 reagent is a sensitive and precise method for DNA quantification if the G+C content is less than 50%. In addition, this method allows quantification of very low levels of DNA (nanogram scale). Moreover, the samples can be crude cell extracts. Also, UV absorbance at 260 nm and fluorescence detection with thiazole orange reagent are sensitive methods for nucleic acid detection, but only if purified nucleic acids need to be measured.  相似文献   

7.
8.

Background

Tuberculosis (TB) is one of the major public health concerns worldwide. The detection of the pathogen Mycobacterium tuberculosis complex (MTBC) as early as possible has a great impact on the effective control of the spread of the disease. In our study, we evaluated the hyplex® TBC PCR test (BAG Health Care GmbH), a novel assay using a nucleic acid amplification technique (NAAT) with reverse hybridisation and ELISA read out for the rapid detection of M. tuberculosis directly in clinical samples.

Results

A total of 581 respiratory and non-respiratory specimens from our pneumological hospital and the National TB Institute of Uzbekistan were used for the evaluation of the PCR assay. Of these, 292 were classified as TB samples and 289 as non-TB samples based on the results of the TB cultures as reference method. The PCR results were initially used to optimise the cut-off value of the hyplex® TBC test system by means of a ROC analysis. The overall sensitivity of the assay was determined to be 83.1%. In smear-positive TB samples, the sensitivity of the hyplex® TBC PCR test was estimated to 93.4% versus 45.1% in smear-negative samples. The specificity of the test was 99.25%. Of the two specimens (0.75%) with false-positive PCR results, one yielded a culture positive for non-tuberculous mycobacteria. Based on the assumption of a prevalence of 8% TB positives among the samples in our diagnostic TB laboratory, the positive and negative predictive values were estimated to 90.4% and 98.5%, respectively.

Conclusions

The hyplex® TBC PCR test is an accurate NAAT assay for a rapid and reliable detection of M. tuberculosis in various respiratory and non-respiratory specimens. Compared to many other conventional NAAT assays, the hyplex® TBC PCR test is in a low price segment which makes it an attractive option for developing and emerging countries with high TB burdens.
  相似文献   

9.
In situ hybridization (ISH) methods for detection of nucleic acid sequences have proved especially powerful for revealing genetic markers and gene expression in a morphological context. Although target and signal amplification technologies have enabled researchers to detect relatively low-abundance molecules in cell extracts, the sensitive detection of nucleic acid sequences in tissue specimens has proved more challenging. We recently reported the development of a branched DNA (bDNA) ISH method for detection of DNA and mRNA in whole cells. Based on bDNA signal amplification technology, bDNA ISH is highly sensitive and can detect one or two copies of DNA per cell. In this study we evaluated bDNA ISH for detection of nucleic acid sequences in tissue specimens. Using normal and human papillomavirus (HPV)-infected cervical biopsy specimens, we explored the cell type-specific distribution of HPV DNA and mRNA by bDNA ISH. We found that bDNA ISH allowed rapid, sensitive detection of nucleic acids with high specificity while preserving tissue morphology. As an adjunct to conventional histopathology, bDNA ISH may improve diagnostic accuracy and prognosis for viral and neoplastic diseases.  相似文献   

10.
Isothermal recombinase polymerase amplification (RPA) assays for the specific detection of “Candidatus Phytoplasma mali (Ca. P. mali),” the causal agent of apple proliferation, were developed. The assays amplify a fragment of the imp gene and amplimers were detected either by fluorescence in real‐time mode (TwistAmp®exo assay) using a fluorophore‐labelled probe or by direct visualization employing a lateral flow device (TwistAmp®nfo assay/Milenia®HybriDetect). The RPA assays specifically amplified DNA from “Ca. P. mali” strains, and cross‐reactivity with other phytoplasmas or plant DNA was not observed. The limit of detection was determined with a cloned imp standard, and positive results were obtained down to 10 copies with both RPA assay formats. In comparison with a TaqMan real‐time PCR assay based on the same target gene, the RPA assays were equally sensitive, but results were obtained faster. Simplified nucleic acid extraction procedures from plant tissue with Tris‐ and CTAB‐based buffers revealed that crude Tris–DNA extracts were a suitable source for RPA tests while larger concentrations of CTAB were inhibitory. This is the first report of RPA‐based assays for the detection of “Ca. P. mali”. The assays are suitable for high‐throughput screening of plant material and point‐of‐care diagnostic and can be potentially combined with a simplified DNA extraction procedure.  相似文献   

11.
随着纳米技术的发展,运用纳米粒子检测核酸成为研究的热点.在众多检测方法中,基于纳米金的比色分析法操作较为简便,只需普通光学仪器甚至肉眼即可观察结果,从而表现出广阔的市场及临床应用前景.基于纳米金的比色分析法有多种,不同检测原理的方法在灵敏度和实用性上存在差异.根据纳米金是否经寡核苷酸探针修饰可将其分为基于功能化纳米金的比色分析法和基于未功能化纳米金的比色分析法,前者又分为利用纳米金颜色变化的聚集反应体系以及利用纳米金特殊氧化-还原能力的银染增强体系.  相似文献   

12.
We investigated the preservation of proteoglycan (PG) structure in rat epiphyseal cartilage using N-N-dimethylformamide (DMF) dehydration before embedding. After aldehyde fixation, specimens with and without routine osmium post-fixation were dehydrated in graded DMF and embedded in either Spurr's resin or Lowicryl K4M resin. Standard ethanol dehydration with Spurr or Lowicryl embedding techniques resulted in the formation of condensed PGs, called matrix granules. DMF dehydration before embedding greatly improved the preservation of PG structure and resulted in an extended appearance of PGs closely resembling the fine filamentous network of cartilage tissues processed by rapid freezing and freeze-substitution. However, en bloc staining of aldehyde-fixed specimens with cationic reagents before or during DMF dehydration induced the condensation of PGs and resulted in the formation of matrix granules. These observations demonstrate that DMF, a mild dehydration agent, dramatically improves PG preservation without a harmful effect on aldehyde-fixed PG structure and can be utilized regardless of routine post-fixation.  相似文献   

13.
14.
Abstract

Fixation with formaldehyde is the first process to which most biopsy and necropsy specimens are exposed prior to dehydration and embedding in paraffin wax. Tissue specimens that have been fixed in formaldehyde have architectural characteristics that are familiar to virtually every pathologist and these facilitate routine diagnosis. Nevertheless, formaldehyde fixation has some deleterious effects including reduction in immunoreactivity and degradation of nucleic acids. Development of methods to counteract these deleterious effects requires an understanding of the chemical events that occur during tissue fixation and subsequent tissue processing. This short review illustrates some of the chemical consequences of formaldehyde fixation and ethanol dehydration. It also provides some insight into the molecular events accompanying heat-induced antigen retrieval.  相似文献   

15.
Biochemical experimentation generally requires accurate knowledge, at an early stage, of the nucleic acid, protein, and other biomolecular components in potentially heterogeneous specimens. Nucleic acids can be detected via several established approaches, including analytical methods that are spectrophotometric (e.g., A260), fluorometric (e.g., binding of fluorescent dyes), or colorimetric (nucleoside-specific chromogenic chemical reactions).1 Though it cannot readily distinguish RNA from DNA, the A260/A280 ratio is commonly employed, as it offers a simple and rapid2 assessment of the relative content of nucleic acid, which absorbs predominantly near 260 nm and protein, which absorbs primarily near 280 nm. Ratios < 0.8 are taken as indicative of ''pure'' protein specimens, while pure nucleic acid (NA) is characterized by ratios > 1.53.However, there are scenarios in which the protein/NA content cannot be as clearly or reliably inferred from simple uv-vis spectrophotometric measurements. For instance, (i) samples may contain one or more proteins which are relatively devoid of the aromatic amino acids responsible for absorption at ≈280 nm (Trp, Tyr, Phe), as is the case with some small RNA-binding proteins, and (ii) samples can exhibit intermediate A260/A280 ratios (~0.8 < ~1.5), where the protein/NA content is far less clear and may even reflect some high-affinity association between the protein and NA components. For such scenarios, we describe herein a suite of colorimetric assays to rapidly distinguish RNA, DNA, and reducing sugars in a potentially mixed sample of biomolecules. The methods rely on the differential sensitivity of pentoses and other carbohydrates to Benedict''s, Bial''s (orcinol), and Dische''s (diphenylamine) reagents; the streamlined protocols can be completed in a matter of minutes, without any additional steps of having to isolate the components. The assays can be performed in parallel to differentiate between RNA and DNA, as well as indicate the presence of free reducing sugars such as glucose, fructose, and ribose (Figure 1).  相似文献   

16.
A simple colorimetric method for determination of hydrogen peroxide in plant materials is described. The method is based on hydrogen peroxide producing a stable red product in reaction with 4-aminoantipyrine and phenol in the presence of peroxidase. Plant tissues was ground with trichloroacetic acid (5% w/v) and extracts were adjusted to pH 8.4 with ammonia solution. Activated charcoal was added to the homogenate to remove pigments, antioxidants and other interfering substances. The colorimetric reagent (pH 5.6) consisted of 4-aminoantipyrine, phenol, and peroxidase. With this method, we have determined the hydrogen peroxide concentration in leaves of eight species which ranged from 0.2 to 0.8 μmol g−1 FW. Changes in hydrogen peroxide concentration of Stylosanthes guianensis in response to heat stress are also analyzed using this method.  相似文献   

17.
An analytical method was developed for the simultaneous speciation of selenomethionine (SeMet) and 2-hydroxy-4-methylselenobutanoic acid (NutraSelen®), a new SeMet precursor. The compounds could be baseline resolved by ion-pairing reversed-phase HPLC using ICP MS detection. Detection limits of 1 ng mL?1 (Se content) could be reached. SELM-1 reference material was used to validate the SeMet measurement. Additionally, the quantification of NutraSelen® was validated by standard addition together with checking the Se mass balance. The procedure developed was then applied to the monitoring of the conversion of NutraSelen® into SeMet by yeast.  相似文献   

18.
Attachment of the plant pathogen Agrobacterium tumefaciens to host plant cells is an early and necessary step in plant transformation and agroinfiltration processes. However, bacterial attachment behavior is not well understood in complex plant tissues. Here we developed an imaging‐based method to observe and quantify A. tumefaciens attached to leaf tissue in situ. Fluorescent labeling of bacteria with nucleic acid, protein, and vital dyes was investigated as a rapid alternative to generating recombinant strains expressing fluorescent proteins. Syto 16 green fluorescent nucleic acid stain was found to yield the greatest signal intensity in stained bacteria without affecting viability or infectivity. Stained bacteria retained the stain and were detectable over 72 h. To demonstrate in situ detection of attached bacteria, confocal fluorescent microscopy was used to image A. tumefaciens in sections of lettuce leaf tissue following vacuum‐infiltration with labeled bacteria. Bacterial signals were associated with plant cell surfaces, suggesting detection of bacteria attached to plant cells. Bacterial attachment to specific leaf tissues was in agreement with known leaf tissue competencies for transformation with Agrobacterium. Levels of bacteria attached to leaf cells were quantified over time post‐infiltration. Signals from stained bacteria were stable over the first 24 h following infiltration but decreased in intensity as bacteria multiplied in planta. Nucleic acid staining of A. tumefaciens followed by confocal microscopy of infected leaf tissue offers a rapid, in situ method for evaluating attachment of A. tumefaciens' to plant expression hosts and a tool to facilitate management of transient expression processes via agroinfiltration. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

19.
A routine procedure has been established for the sensitive and specific detection of avocado sunblotch viroid in partially purified nucleic acid extracts of avocado leaves by hybridisation analysis with 32P-complementary DNA prepared against the purified viroid. Avocado sunblotch viroid was shown to be present in 12 avocado trees that had indexed positive in a biological test for sunblotch disease but was absent from 10 trees that indexed negative. The complete correlation between sunblotch disease and the presence of viroid indicates that the complementary DNA hybridisation assay procedure can be used for the indexing of sunblotch disease. The overall procedure of leaf extraction and hybridisation analysis can be completed in 5 days and is to be compared with up to 2 yr required for indexing by biological methods. The level of avocado sunblotch viroid in partially purified nucleic acid extracts of a number of different sources of sunblotch infected avocado leaves was found to vary 10 000-fold from 0.2% to 2 × 10-5% by weight. The lower limit of detectability of the viroid by the hybridisation assay is considered to be about 10-5% by weight; this is at least 103 times more sensitive than the detection of the viroid by polyacrylamide gel electrophoresis of the leaf nucleic acid extracts followed by staining.  相似文献   

20.
We have developed a new method for mounting nucleic acids and nucleic acidprotein complexes for high-resolution electron microscopy, and have used it to characterize the interaction between ribosomal protein S1 and single-stranded nucleic acids. We find that SI unwinds most, but not all of the secondary structure present in MS2 RNA and øX174 viral DNA. The binding of S1 to DNA and RNA is not highly co-operative, and has a stoichiometry of one S1 per 10 to 15 nucleotides. We have not observed any tendency for S1 nucleic acid complexes to form aggregates in either 0·01 m-Na+ or 0·1 m-Na+. An analogous protein isolated from the 30 S ribosomal subunit of Caulobacter crescentus is indistinguishable from Escherichia coli S1 in these studies. The mono-N-ethylmaleimide derivative of E. coli S1 will bind to both MS2 RNA and øX174 viral DNA with a stoichiometry of one N-ethylmaleimide-S1 per 10 to 15 nucleotides, but will not unwind the secondary structure of either of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号