首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tartrate resistant acid phosphatase (TRAP) activity of bone is a suitable biochemical marker for osteoclastic bone resorption. Qualitatively, the histochemical distribution of TRAP has been used to identify osteoclasts responsible for bone resorption; however, there have been few attempts to quantify TRAP localization. We describe a method for evaluating bone resorption by quantifying area percentages of positive TRAP localization using image analysis. Mouse tibiae were paraffin embedded following demineralization in disodium ethylenediamine tetraacetic acid. Longitudinal sections of tibia were cut from 15 levels in the left and the right limbs of six mice (180 sections total) and stained for TRAP distribution. Positive TRAP localization was quantified by pixel area count and reported as a percentage of the total tissue area specified. The 1.85 mm2 region of interest was placed at the midpoint of the epiphyseal growth plate containing the provisional calcification layer and the primary spongiosa, while excluding cortical bone of each mouse tibia. The percentage of TRAP localization ranged from 0.95 to 1.31% and was not significantly different from level to level or limb to limb in each mouse (p > 0.100). Within the same region of interest, an osteoclast count along the bone perimeter also was performed. We demonstrated a strong correlation (r2 = 0.903) between the conventional histomorphometric osteoclast index and positive TRAP localization, validating the latter as an alternative method to assess bone resorption. Quantitative analysis of TRAP is significant because it allows statistical comparisons between treatment groups, promotes precise pathological diagnoses and facilitates a reference data base that may aid the study of bone related diseases involving increased bone resorption.  相似文献   

2.
RANKL-stimulation of osteoclast precursors results in up-regulation of genes involved in the process of differentiation and activation. In this report we describe the expression and functional characterization of Sorting Nexin 10 (snx10). Snx10 belongs to the sorting nexin (SNX) family, a diverse group of proteins with a common feature: the PX domain, which is involved in membrane trafficking and cargo sorting in endosomes. Snx10 is strongly up-regulated during RANKL-induced osteoclast differentiation in vitro and expressed in osteoclasts in vivo. qPCR analysis confirmed a significant increase in the expression of snx10 in in vitro-derived osteoclasts, as well as in femur and calvaria. Immunohistochemical analysis of mouse embryo sections showed expression in long bone, calvariae, and developing teeth. The expression was limited to cells that also expressed TRAP, demonstrating osteoclastic localization. Confocal immunofluorescence and subcellular fractionation analysis revealed Snx10 localization in the nucleus and in the endoplasmic reticulum (ER). To study a possible role for snx10 in osteoclast differentiation and function we silenced snx10 expression and found that snx10 silencing inhibited RANKL-induced osteoclast formation and osteoclast resorption on hydroxyapatite. Silencing also inhibited TRAP secretion. Taken together, these results confirm that snx10 is expressed in osteoclasts and is required for osteoclast differentiation and activity in vitro. Since inhibition of vesicular trafficking is essential for osteoclast formation and activity and SNX10 is involved in intracellular vesicular trafficking, these studies may identify a new candidate gene involved in the development of human bone diseases including osteoporosis.  相似文献   

3.
4.
小GTP结合蛋白Rad (Ras-related associated with diabetes)是小GTPases的RGK亚家族成员,其在心脏之外的细胞和生理功能仍有待阐明,本研究旨在探讨Rad对小鼠骨密度、破骨细胞分化和骨量的调节作用。本研究以Rad基因敲除小鼠为动物模型,野生(WT)小鼠为对照,通过微计算机断层摄影术(microscopic computed tomography,μCT)分析雄性和雌性小鼠的股骨小梁骨体积分数和骨小梁数量,以抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase, TRAP)染色和抗酒石酸酸性磷酸酶(TRAP)+多核细胞(multinucleated cell, MNC)计数检测破骨细胞的分化和表面积,使用组织形态计量学来考察骨形成速率。结果显示,与WT野生型小鼠相比,雌性Rad基因敲除小鼠的股骨表现出显著较低的小梁骨体积分数(BV/TV)。Rad缺失使小鼠股骨的皮质骨面积明显低于WT小鼠。抗酒石酸酸性磷酸酶(TRAP)染色和TRAP+MNCs计数表明Rad的缺失显著增强了体外破骨细胞的分化。与正常野生小鼠相比,Rad缺失使小鼠的破骨细胞表面积减少。在Rad基因敲除小鼠中矿物沉积率(MAR)显著降低,矿化表面百分比(MS/BS)升高,骨形成速率/骨表面(BFR/BS)下降。本研究初步结论表明,Rad GTPase在骨代谢的调节中起着重要的作用,在小鼠中敲除Rad可导致骨密度降低,对Rad作用和调节机制的研究可能会找到骨质疏松症治疗的潜在靶点。  相似文献   

5.
The ultrastructure of osteoclasts was examined in fetal rat bones after stimulation or inhibition of resorption in culture. A central ruffled border area completely encircled by a clear zone was considered to represent the resorbing system of the cell. The proportion of ruffled border and clear zone in osteoclast cross sections was compared with changes in bone resorption as measured by the release of previously incorporated radioactive calcium (45Ca). In control cultures 55% of the osteoclast cross sections showed an area closely apposed to bone and this consisted mainly of clear zone; only 11% showed ruffled borders. Treatment with parathyroid hormone (PTH) increased 45Ca release, increased the frequency of finding areas closely apposed to bone (79%), and markedly increased the frequency of the ruffled border area (64%). Colchicine given concurrently with PTH decreased the number of osteoclasts. Colchicine or calcitonin treatment after PTH stimulation decreased the proportion of ruffled border area significantly by 1 h; this was followed by a decrease in 45Ca release. These inhibited osteoclasts resembled osteoclasts from control, unstimulated cultures, suggesting that the cells had returned to their inactive state. Colchicine-treated osteoclasts also showed a loss of microtubules and a massive accumulation of 100 Å filaments, suggesting that synthesis of microtubular subunits had increased.  相似文献   

6.
Osteopontin (OPN) is a multifunctional protein implicated in cellular adhesion and migration. Phosphorylation has emerged as a post-translational modification important for certain biological activities of OPN. This study demonstrates that adhesion of isolated neonatal rat osteoclasts in vitro was augmented on bovine milk osteopontin (bmOPN) with post-translational modifications (PTMs) compared to human Escherichia-coli-derived recombinant OPN (hrOPN) without PTMs. The difference in adhesiveness between these OPN variants was more pronounced at low coating concentrations (≤ 10 μg/ml). Both OPN forms adhered exclusively using a β3-integrin. Partial (≤50%) dephosphorylation by tartrate-resistant acid phosphatase (TRAP) in vitro reduced osteoclast attachment to bmOPN to the same level as to hrOPN, demonstrating the importance of specific phosphorylations in OPN-dependent osteoclast adhesion.The involvement of PTMs of OPN in migration of primary rat and mouse osteoclasts was assessed on culture dishes coated with the different OPN forms and then overlaid with gold particles. Here, osteoclasts exhibited haptotactic migration on bmOPN but did not migrate on hrOPN. The presence of neutralizing antibodies to TRAP inhibited migration on bmOPN. Moreover, migration of osteoclasts isolated from TRAP-overexpressing transgenic mice was augmented on bmOPN, but not on hrOPN or type I collagen.These data collectively provide evidence in favor of a role for endogenous TRAP in regulating osteoclast migration on post-translationally modified OPN. In a tissue context, modulation of the phosphorylation level of OPN by extracellular phosphatases, e.g., TRAP, could regulate the extent of degradation such as depth and area at each bone resorption site by triggering osteoclast detachment and facilitate subsequent migration on the bone surface.  相似文献   

7.
Human CD46 is a receptor for the M protein of group A streptococcus (GAS). The emm1 GAS strain GAS472 was isolated from a patient suffering from streptococcal toxic shock‐like syndrome. Human CD46‐expressing transgenic (Tg) mice developed necrotizing fasciitis associated with osteoclast‐mediated progressive and severe bone destruction in the hind paws 3 days after subcutaneous infection with 5 × 105 colony‐forming units of GAS472. GAS472 infection induced expression of the receptor activator of nuclear factor‐κB ligand (RANKL) while concomitantly reducing osteoprotegerin expression in the hind limb bones of CD46 Tg mice. Micro‐computed tomography analysis of the bones suggested that GAS472 infection induced local bone erosion and systemic bone loss in CD46 Tg mice. Because treatment with monoclonal antibodies (mAbs) against mouse CD4+ and CD8+ T lymphocytes did not inhibit osteoclastogenesis, T lymphocyte‐derived RANKL was not considered a major contributor to massive bone loss during GAS472 infection. However, immunohistochemical analysis of the hind limb bones showed that GAS472 infection stimulated RANKL production in various bone marrow cells, including fibroblast‐like cells. Treatment with a mAb against mouse RANKL significantly inhibited osteoclast formation and bone resorption. These data suggest that increased expression of RANKL in heterogeneous bone marrow cells provoked bone destruction during GAS infection.  相似文献   

8.
YJ Kuo  FY Tsuang  JS Sun  CH Lin  CH Chen  JY Li  YC Huang  WY Chen  CB Yeh  JF Shyu 《PloS one》2012,7(7):e40272

Introduction

Treatment for osteoporosis commonly includes the use of bisphosphonates. Serious side effects of these drugs are caused by the inhibition of bone resorption as a result of osteoclast apoptosis. Treatment using calcitonin along with bisphosphonates overcomes these side-effects in some patients. Calcitonin is known to inhibit bone resorption without reducing the number of osteoclasts and is thought to prolong osteoclast survival through the inhibition of apoptosis. Further understanding of how calcitonin inhibits apoptosis could prove useful to the development of alternative treatment regimens for osteoporosis. This study aimed to analyze the mechanism by which calcitonin influences osteoclast apoptosis induced by a bisphosphate analog, sintered dicalcium pyrophosphate (SDCP), and to determine the effects of co-treatment with calcitonin and SDCP on apoptotic signaling in osteoclasts.

Methods

Isolated osteoclasts were treated with CT, SDCP or both for 48 h. Osteoclast apoptosis assays, pit formation assays, and tartrate-resistant acid phosphatase (TRAP) staining were performed. Using an osteoporosis rat model, ovariectomized (OVX) rats received calcitonin, SDCP, or calcitonin + SDCP. The microarchitecture of the fifth lumbar trabecular bone was investigated, and histomorphometric and biochemical analyses were performed.

Results

Calcitonin inhibited SDCP-induced apoptosis in primary osteoclast cultures, increased Bcl-2 and Erk activity, and decreased Mcl-1 activity. Calcitonin prevented decreased osteoclast survival but not resorption induced by SDCP. Histomorphometric analysis of the tibia revealed increased bone formation, and microcomputed tomography of the fifth lumbar vertebrate showed an additive effect of calcitonin and SDCP on bone volume. Finally, analysis of the serum bone markers CTX-I and P1NP suggests that the increased bone volume induced by co-treatment with calcitonin and SDCP may be due to decreased bone resorption and increased bone formation.

Conclusions

Calcitonin reduces SDCP-induced osteoclast apoptosis and increases its efficacy in an in vivo model of osteoporosis.  相似文献   

9.
MCP-1 (monocyte chemotactic protein-1) is a CC chemokine that is induced by receptor activator of NFkappaB ligand (RANKL) in human osteoclasts. In the absence of RANKL, treatment of human peripheral blood mononuclear cells with macrophage colony-stimulating factor and MCP-1 resulted in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells that are positive for calcitonin receptor (CTR) and a number of other osteoclast markers, including nuclear factor of activated t cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). Although NFATc1 was strongly induced by MCP-1 and was observed in the nucleus, MCP-1 did not permit the formation of bone-resorbing osteoclasts, although these cells had the typical TRAP(+)/CTR(+) multinuclear phenotype of osteoclasts. Despite a similar appearance to osteoclasts, RANKL treatment was required in order for TRAP(+)/CTR(+) multinuclear cells to develop bone resorption activity. The lack of bone resorption was correlated with a deficiency in expression of certain genes related to bone resorption, such as cathepsin K and MMP9. Furthermore, calcitonin blocked the MCP-1-induced formation of TRAP(+)/CTR(+) multinuclear cells as well as blocking osteoclast bone resorption activity, indicating that calcitonin acts at two stages of osteoclast differentiation. Ablation of NFATc1 in mature osteoclasts did not prevent bone resorption activity, suggesting NFATc1 is involved in cell fusion events and not bone resorption. We propose that the MCP-1-induced TRAP(+)/CTR(+) multinuclear cells represent an arrested stage in osteoclast differentiation, after NFATc1 induction and cellular fusion but prior to the development of bone resorption activity.  相似文献   

10.
Tartrate-resistant acid phosphatase (TRAP) has been proposed as a cytochemical marker for osteoclasts. We have developed an improved technique for the localization of TRAP in rat and mouse bone and cartilage. This procedure employs JB-4 plastic as the embedding medium, permits decalcification, and results in improved morphology compared with frozen sections. Peritoneal lavage cells were used to determine the appropriate isomer and concentration of tartrate necessary for inhibition of tartrate-sensitive acid phosphatase. After incubation in medium containing 50 mM L(+)-tartaric acid, osteoclasts and chondroclasts were heavily stained with reaction product. On the basis of their relative sensitivity to tartrate inhibition, three populations of mononuclear cells could also be distinguished. These three populations may represent: heavily stained osteoclast/chondroclast precursors; sparsely stained osteoblast-like cells lining the bone surface; and unstained cells of monocyte-macrophage lineage. Our results are consistent with the use of TRAP as a histochemical marker for study of the osteoclast.  相似文献   

11.
Histochemical detection of tartrate-resistant acid phosphatase (TRAP) activity is a fundamental technique for visualizing osteoclastic bone resorption and assessing osteoclast activity status in tissues. This approach has mostly employed colorimetric detection, which has limited quantification of activity in situ and co-labelling with other skeletal markers. Here, we report simple colorimetric and fluorescent TRAP assays in zebrafish and medaka, two important model organisms for investigating the pathogenesis of bone disorders. We show fluorescent TRAP staining, utilising the ELF97 substrate, is a rapid, robust, and stable system to visualise and quantify osteoclast activity in zebrafish, and is compatible with other fluorescence stains, transgenic lines and antibody approaches. Using this approach, we show that TRAP activity is predominantly found around the base of the zebrafish pharyngeal teeth, where osteoclast activity state appears to be heterogeneous.Key words: TRAP, tartrate-resistant acid phosphatase, osteoclast, ELF97, fracture, zebrafish, medaka  相似文献   

12.
《Phytomedicine》2015,22(9):813-819
BackgroundWhile radiation-based therapies are effective for treating numerous malignancies, such treatments can also induce osteoporosis.PurposeWe assessed the antiosteoporotic properties of total saponins extracted from the leaves of Panax notoginseng (LPNS) in a mouse model of radiation-induced osteoporosis and in vitro.Study design/methodsThe bone mineral densities, the marker of bone formation and resorption, and inflammatory factors were measured in vivo. Cell proliferation and differentiation were detected in vitro.ResultsThe results showed that bone mineral densities in irradiated mice administered LPNS were significantly increased compared to those in irradiated mice which had not received LPNS. LPNS attenuated the inflammation caused by irradiation, and significantly increased blood serum AKP activity, the mRNA levels of RUNX2 and osteoprotegerin, and the numbers of CFU-Fs formed by bone marrow cells collected from irradiated mice. In contrast, LPNS decreased the numbers of osteoclast precursor cells (CD117+/RANKL+ cells and CD71+/CD115+ cells) and the mRNA levels of TRAP and ATP6i. These results suggest that LPNS functions as a negative regulator of bone resorption. In vitro assays showed that LPNS promoted the differentiation of bone marrow mesenchymal stem cells and mononuclear cells into osteoblasts and osteoclasts, respectively, but had no effect on osteoclast activation.ConclusionThese results demonstrate that LPNS has significant antiosteoporotic activity, which may warrant further investigations concerning its therapeutic effects in treating radiation-induced osteoporosis.  相似文献   

13.
Inflammatory mediator prostaglandin E2 (PGE2) contributes to bone resorption in several inflammatory conditions including periodontitis. The terminal enzyme, microsomal prostaglandin E synthase‐1 (mPGES‐1) regulating PGE2 synthesis is a promising therapeutic target to reduce inflammatory bone loss. The aim of this study was to investigate effects of mPGES‐1 inhibitors, aminothiazoles TH‐848 and TH‐644, on PGE2 production and osteoclastogenesis in co‐cultures of periodontal ligament (PDL) and osteoclast progenitor cells RAW 264.7, stimulated by lipopolysaccharide (LPS), and bone resorption in RANKL‐mediated peripheral blood mononuclear cells (PBMCs). PDL and RAW 264.7 cells were cultured separately or co‐cultured and treated with LPS alone or in combination with aminothiazoles. Multinucleated cells stained positively for tartrate‐resistant acid phosphatase (TRAP) were scored as osteoclast‐like cells. Levels of PGE2, osteoprotegerin (OPG) and interleukin‐6, as well as mRNA expression of mPGES‐1, OPG and RANKL were analysed in PDL cells. PBMCs were treated with RANKL alone or in combination with aminothiazoles. TRAP‐positive multinucleated cells were analysed and bone resorption was measured by the CTX‐I assay. Aminothiazoles reduced LPS‐stimulated osteoclast‐like cell formation both in co‐cultures and in RAW 264.7 cells. Additionally, aminothiazoles inhibited PGE2 production in LPS‐stimulated cultures, but did not affect LPS‐induced mPGES‐1, OPG or RANKL mRNA expression in PDL cells. In PBMCs, inhibitors decreased both osteoclast differentiation and bone resorption. In conclusion, aminothiazoles reduced the formation of osteoclast‐like cells and decreased the production of PGE2 in co‐cultures as well as single‐cell cultures. Furthermore, these compounds inhibited RANKL‐induced bone resorption and differentiation of PBMCs, suggesting these inhibitors for future treatment of inflammatory bone loss such as periodontitis.  相似文献   

14.
Osteoclasts are bone‐resorbing multinucleated cells differentiated from monocyte/macrophage lineage precursors. A novel osteoclast precursor cell line, 4B12 was established from Mac‐1+c‐Fms+RANK+ cells from calvaria of 14‐day‐old mouse embryos using immunofluorescence and cell‐sorting methods. Like M‐CSF‐dependent bone marrow macrophages (M‐BMMs), M‐CSF is required for 4B12 cells to differentiate into TRAP‐positive multinucleated cells [TRAP(+) MNCs] in the presence of RANKL. Bone‐resorbing osteoclasts differentiated from 4B12 cells on dentine slices possess both a clear zone and ruffled borders and express osteoclast‐specific genes. Bone‐resorbing activity, but not TRAP, was enhanced in the presence of IL‐1α. The number of TRAP(+) MNCs and the number of pits formed from 4B12 cells on dentine slices was fourfold higher than that from M‐BMMs. 4B12 cells were identified as macrophages with Mac‐1 and F4/80, yet lost these markers upon differentiation into osteoclasts as determined by confocal laser scanning microscopy. The 4B12 cells do not have the potential to differentiate into dendritic cells indicating commitment to the osteoclast lineage. 4B12 cells are readily transfectable with siRNA transfection before and after differentiation. These data show that 4B12 cells faithfully replicate the properties of primary cells and are a useful and powerful model for analyzing the molecular and cellular regulatory mechanisms of osteoclastogenesis and osteoclast function. J. Cell. Physiol. 221: 40–53, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

15.
To elucidate the direct role and mechanism of FGFR1 signaling in the differentiation and activation of osteoclasts, we conditionally inactivated FGFR1 in bone marrow monocytes and mature osteoclasts of mice. Mice deficient in FGFR1 (Fgfr1−/−) exhibited misregulated bone remodeling with reduced osteoclast number and impaired osteoclast function. In vitro assay demonstrated that the number of tartrate-resistant acid phosphatase (TRAP) positive osteoclasts derived from bone marrow monocytes of Fgfr1−/− mice was significantly diminished. The bone resorption activity of mature osteoclasts derived from Fgfr1−/− mice was also suppressed. Further analysis showed that the osteoclasts with FGFR1 deficiency exhibited downregulated expression of genes related to osteoclastic activity including TRAP and MMP-9. The phosphorylation of Erk1/2 mitogen-activated protein (MAP) kinase was also decreased. Our results suggest that FGFR1 is indispensable for complete differentiation and activation of osteoclasts in mice.  相似文献   

16.
《Phytomedicine》2015,22(12):1120-1124
BackgroundAnimal experiment studies have revealed a positive association between intake of citrus fruits and bone health. Nomilin, a limonoid present in citrus fruits, is reported to have many biological activities in mammalian systems, but the mechanism of nomilin on bone metabolism regulation is currently unclear.PurposeTo reveal the mechanism of nomilin on osteoclastic differentiation of mouse primary bone marrow-derived macrophages (BMMs) and the mouse RAW 264.7 macrophage cell line into osteoclasts.Study designControlled laboratory study. Effects of nomilin on osteoclastic differentiation were studied in in vitro cell cultures.MethodsCell viability of RAW 264.7 cells and BMMs was measured with the Cell Counting Kit. TRAP-positive multinucleated cells were counted as osteoclast cell numbers. The number and area of resorption pits were measured as bone-resorbing activity. Osteoclast-specific genes expression was evaluated by quantitative real-time PCR; and proteins expression was evaluated by western blot.ResultsNomilin significantly decreased TRAP-positive multinucleated cell numbers compared with the control, and exhibited no cytotoxicity. Nomilin decreased bone resorption activity. Nomilin downregulated osteoclast-specific genes, NFATc1 and TRAP mRNA levels. Furthermore, nomilin suppressed MAPK signaling pathways.ConclusionThis study demonstrates clearly that nomilin has inhibitory effects on osteoclastic differentiation in vitro. These findings indicate that nomilin-containing herbal preparations have potential utility for the prevention of bone metabolic diseases.  相似文献   

17.

Background

The purpose of this study is to determine whether isolated suspension mouse peripheral mononucleated blood cells have the potential to differentiate into two distinct types of cells, i.e., osteoblasts and osteoclasts.

Results

Differentiation into osteoblast cells was concomitant with the activation of the Opn gene, increment of alkaline phosphatase (ALP) activity and the existence of bone nodules, whereas osteoclast cells activated the Catk gene, increment of tartrate resistant acid phosphatase (TRAP) activity and showed resorption activities via resorption pits. Morphology analyses showed the morphology of osteoblast and osteoclast cells after von Kossa and May-Grunwald-Giemsa staining respectively.

Conclusions

In conclusion, suspension mononucleated cells have the potentiality to differentiate into mature osteoblasts and osteoclasts, and hence can be categorized as multipotent stem cells.  相似文献   

18.
Abnormally elevated formation and activation of osteoclasts are primary causes for a majority of skeletal diseases. In this study, we found that KP-A159, a newly synthesized thiazolopyridine derivative, inhibited osteoclast differentiation and function in vitro, and inflammatory bone loss in vivo. KP-A159 did not cause a cytotoxic response in bone marrow macrophages (BMMs), but significantly inhibited the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). KP-A159 also dramatically inhibited the expression of marker genes related to osteoclast differentiation, including TRAP (Acp5), cathepsin K (Ctsk), dendritic cell-specific transmembrane protein (Dcstamp), matrix metallopeptidase 9 (Mmp9), and nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1). Moreover, actin ring and resorption pit formation were inhibited by KP-A159. Analysis of the signaling pathway involved showed that KP-A159 inhibited RANKL-induced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and mitogen-activated protein kinase kinase1/2 (MEK1/2). In a mouse inflammatory bone loss model, KP-A159 significantly rescued lipopolysaccharide (LPS)-induced bone loss by suppressing osteoclast numbers. Therefore, KP-A159 targets osteoclasts, and may be a potential candidate compound for prevention and/or treatment of inflammatory bone loss.  相似文献   

19.
Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells derived from monocyte/macrophage-lineage precursors and are critically responsible for bone resorption. In giant cell tumor of bone (GCT), numerous TRAP-positive multinucleated giant cells emerge and severe osteolytic bone destruction occurs, implying that the emerged giant cells are biologically similar to osteoclasts. To identify novel genes involved in osteoclastogenesis, we searched genes whose expression pattern was significantly different in GCT from normal and other bone tumor tissues. By screening a human gene expression database, we identified sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) as one of the genes markedly overexpressed in GCT. The mRNA expression level of Siglec-15 increased in association with osteoclast differentiation in cultures of mouse primary unfractionated bone marrow cells (UBMC), RAW264.7 cells of the mouse macrophage cell line and human osteoclast precursors (OCP). Treatment with polyclonal antibody to mouse Siglec-15 markedly inhibited osteoclast differentiation in primary mouse bone marrow monocyte/macrophage (BMM) cells stimulated with receptor activator of nuclear factor κB ligand (RANKL) or tumor necrosis factor (TNF)-α. The antibody also inhibited osteoclast differentiation in cultures of mouse UBMC and RAW264.7 cells stimulated with active vitamin D3 and RANKL, respectively. Finally, treatment with polyclonal antibody to human Siglec-15 inhibited RANKL-induced TRAP-positive multinuclear cell formation in a human OCP culture. These results suggest that Siglec-15 plays an important role in osteoclast differentiation.  相似文献   

20.
Involvement of tyrosine phosphorylation in osteoclastic bone resorption was examined using osteoclast-like multinucleated cells prepared from co-cultures of mouse osteoblastic cells and bone marrow cells in the presence of 1α,25-dihydroxyvitamin D3. When osteoclast-like cells were plated on culture dishes in the presence of 10% fetal bovine serum, they were sharply stained in their peripheral region by anti-phosphotyrosine antibody. Western blot analysis revealed that 115-to 130-kD proteins were tyrosine-phosphorylated in osteoclast-like cells. Using immunoprecipitation and immunoblotting, one of the proteins with 115–130 kD was identified as focal adhesion kinase (p125FAK), a tyrosine kinase, which is localized in focal adhesions. Immunostaining with anti-p 125FAK antibody revealed that p125FAK was mainly localized at the periphery of osteoclast-like cells. Herbimycin A, a tyrosine kinase inhibitor, not only suppressed tyrosine phosphorylation of p125FAK but also changed the intracellular localization of p125FAK and disrupted a ringed structure of F-actin-containing podosomes in osteoclast-like cells. Antisense oligodeoxynucleotides to p125FAK inhibited dentine resorption by osteoclast-like cells, whereas sense oligodeoxynucleotides did not. These results suggest that p125FAK is involved in osteoclastic bone resorption and that tyrosine phosphorylation of p125FAK is critical for regulating osteoclast function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号