首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The threespine stickleback (Gasterosteus aculeatus) has emerged as an important model organism in evolutionary ecology, largely due to the repeated, parallel evolution of divergent morphotypes found in populations having colonized freshwater habitats. However, morphological divergence following colonization is not a universal phenomenon. We explore this in a large-scale estuarine ecosystem inhabited by two parapatric stickleback demes, each physiologically adapted to divergent osmoregulatory environments (fresh vs. saline waters). Using geometric morphometric analyses of wild-caught individuals, we detected significant differences between demes, in addition to sexual dimorphism, in body shape. However, rearing full-sib families from each deme under controlled, reciprocal salinity conditions revealed no differences between genotypes and highly significant environmental effects. It is also noteworthy that fish from both demes were fully plated, whether found in the wild or reared under reciprocal salinity conditions. Although we found significant heritability for body shape, we also noted significant direct environmental effects for many latent shape variables. Moreover, we found little evidence for diversifying selection acting on body size and shape (Q(ST) ). Nevertheless, uniform compressive variation did exceed neutral expectations, yet despite evidence of both allometry and genetic correlation with body length, we detected no correlated signatures of selection. Taken together, these results suggest that much of the morphological divergence observed in this system is the result of plastic responses to environmental variation rather than adaptive differentiation.  相似文献   

2.
Marine anthropogenic structures offer novel niches for introduced species but their role in the subsequent invasion to natural habitats remains unknown. Upon arrival in new environments, invaders must overcome biotic resistance from native competitors and predators if they are to establish successfully in natural habitats. We tested the hypotheses that (1) artificial structures (e.g., suspended aquaculture installations) present a niche opportunity for invasive species by providing a refuge from native benthic predators, and (2) native predators in natural benthic habitats suppress successful colonization by invaders. A recruitment experiment showed that the ascidians Pyura chilensis (native) and Ciona intestinalis (invasive) could recruit to both suspended artificial structures and natural benthic habitats. Ciona, however, was only able to establish adult populations on artificial structures. In natural benthic habitats Ciona only recruited and grew in predator-exclusion cages, because without this protection predation prevented its establishment. In predation experiments, native invertebrate and fish predators removed all invasive ascidians (recruits and adults) in benthic habitats, which contrasted with the high adult survival of the native ascidian P. chilensis. The refuge from a number of benthic predators facilitates the establishment of large populations of invasive species on suspended structures. We present a conceptual model of the invasion processes that includes the anthropogenic structures as a transitional stepping-stone that facilitates invasion by enhancing and prolonging propagule supply to surrounding natural communities. Those established invaders might then overcome biotic resistance during time periods when populations of consumers or competitors are weakened by natural or anthropogenic disturbances. Our results suggest that the conservation of natural habitats with a high diversity of native predators can be an effective means to prevent the spread of invasive species growing on suspended structures.  相似文献   

3.
Comparative studies of invasive, noninvasive alien, and native congenic plant species can identify plant traits that drive invasiveness. In particular, functional traits associated with rapid growth rate and high fecundity likely facilitate invasive success. As such traits often exhibit high phenotypic plasticity, characterizing plastic responses to anthropogenic environmental changes such as eutrophication and disturbance is important for predicting the invasive success of alien plant species in the future. Here, we compared trait expression and phenotypic plasticity at the species level among invasive, noninvasive alien, and native Bidens species. Plants were grown under nutrient addition and competition treatments, and their functional, morphological, and seed traits were examined. Invasive B. frondosa exhibited higher phenotypic plasticity in most measured traits than did the alien noninvasive B. pilosa or native B. bipinnata. However, differential plastic responses to environmental treatments rarely altered the rank of trait values among the three Bidens species, except for the number of inflorescences. The achene size of B. frondosa was larger, but its pappus length was shorter than that of B. pilosa. Two species demonstrated opposite plastic responses of pappus length to fertilization. These results suggest that the plasticity of functional traits does not significantly contribute to the invasive success of B. frondosa. The dispersal efficiency of B. frondosa is expected to be lower than that of B. pilosa, suggesting that long‐distance dispersal is likely not a critical factor in determining invasive success.  相似文献   

4.
The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape variation in a damselfly (Lestes sponsa) across a latitudinal gradient in Europe that differed in time constraints mediated by photoperiod and temperature. We reared damselflies from northern and southern populations in the laboratory using a reciprocal transplant experiment that simulated time-constrained (i.e. northern) and unconstrained (southern) photoperiods and temperatures. After emergence, adult wing shape was analysed using geometric morphometrics. Wings from individuals in the northern and southern populations differed significantly in shape when animals were reared in their respective native environment. Comparing wing shape across environments, we found evidence for phenotypic plasticity in wing shape, and this response differed across populations (i.e. G × E interactions). This interaction was driven by a stronger plastic response by individuals from the northern population and differences in the direction of plastic wing shape changes among populations. The alignment between genetic and plastic responses depended on the specific combination of population and rearing environment. For example, there was an alignment between plasticity and genetic differentiation under time-constrained, but not under non-time-constrained conditions for forewings. We thus find mixed support for the hypothesis that environmental plasticity and genetic population differentiation are aligned. Furthermore, although our laboratory treatments mimicked the natural climatic conditions at northern and southern latitudes, the effects of population differences on wing shape were two to four times stronger than plastic effects. We discuss our results in terms of time constraints and the possibility that natural and sexual selection is acting differently on fore- and hindwings.  相似文献   

5.
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors—geographic, environmental, and human‐related—to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human‐related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between‐range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human‐made habitats in North America.  相似文献   

6.
Concerns about the use of genetically appropriate material in restoration often focus on questions of local adaptation. Many reciprocal transplant studies have demonstrated local adaptation in native plant species, but very few have examined how interspecific competition affects the expression of adaptive variation. Our study examined regional scales of adaptation between foothill and coastal populations of two California native bunchgrasses (Elymus glaucus and Nassella pulchra). By combining competitive manipulations with reciprocal transplants, we examined the importance of the vegetation at a site as a selective factor in the process of local adaptation. By monitoring survival and reproduction of reciprocally transplanted populations over the course of 3 years, we also studied the effect of life history stage on the expression of local adaptation. For most of the fitness components we measured, local adaptation was detected and interspecific competition consistently amplified its expression. Expression of local adaptation was especially apparent in the more inbreeding species E. glaucus and suggests that with weaker gene flow, selection may be more effective in creating ecotypes within this species. Local adaptation was detected at all life history stages but was most strongly expressed in traits associated with adult reproduction and the viability of seeds produced by the transplants. Taken together, our results indicate that the importance of local adaptation will become more apparent in the later stages of a restoration project as the plants at a site begin to reproduce and as they experience greater interspecific competition from the maturing vegetation at the site.  相似文献   

7.
8.
Biological traits can determine species ecological niches and define species responses to environmental variation. Species have a specific functional position in the biological community, resulting in interactions like interspecific competition. In this study, we used biological traits in order to define the life strategies of 205 nektonic species of the Mediterranean Sea. Furthermore, traits related to resource use were analyzed to determine the level of trait and niche overlap and their relationship to life strategies. Focusing on habitats of importance (Posidonia beds, coralligène formations, and lagoons), we investigated strategies and niches of the species present there. Finally, we examined the life strategy of Lessepsian species and investigated the niche overlap between them and indigenous species. Archetypal analysis indicated the existence of three life histories corresponding to strategies already documented for fish (equilibrium, periodic, and opportunistic), with some species also placed in intermediate positions. Niche overlap was evaluated by multiple correspondence analysis and the generation of a single distance metric between all species pairs. This identified species occupying relatively empty (underexploited) ecological niches, like the Lessepsian species Siganus luridus and S. rivulatus, a finding that can also be associated with their establishment in the Mediterranean. Most Lessepsian species were associated with the opportunistic life history strategy, again an important aspect related to their establishment. Also, we documented that most species occurring in important habitats have a relatively high overlap of niches. No significant differences were found in the life strategies across Mediterranean habitats; however, variation in niche overlap and traits related to habitat use was detected. The findings can be useful to determine theoretical competition between species and to identify empty ecological niches. Fisheries science can also benefit from comprehending the dynamics of competing stocks or predict the responses of data‐poor stocks to anthropogenic stressors from known examples of species with shared life strategies.  相似文献   

9.
Adaptation to environmental factors may influence the germination and establishment of focal species in ecological restoration. Reciprocal transplants remain one of the best methods to detect local adaptation, but long‐term studies are often not feasible. We conducted reciprocal transplants of the native California bunchgrasses Elymus glaucus and Bromus carinatus between two central California locations to seek evidence of adaptation to local environmental conditions in a single growing season. Experimental plots at one location included grazed and ungrazed sites. The combination of locations and grazing treatments allowed us to determine whether the ability to detect evidence for adaptation depended on grazing regime. In addition, we measured the direct effects of grazing on seedling growth and survival concurrent with our investigation of local adaptation. We detected a homesite advantage for seedling growth or survival in both species, but the factors contributing to adaptive differentiation were species specific. Evidence of local adaptation was detected for seedling biomass in Bromus and for survivorship in Elymus. The homesite advantage observed in both species was greatly reduced under grazed conditions and in Elymus was significant only in the ungrazed plots. Climate and soil analyses detected significant differences between locations in five soil attributes and two climate variables. In particular, differences in exchangeable magnesium indicated that one of the two transplant locations consisted of serpentine soil, which is widely known to drive adaptation in plant populations. Together, these results suggest that it is possible to investigate the scale and factors involved in local adaptation with short‐term transplant studies.  相似文献   

10.
Plants from Open and Shade habitats in two natural populations (Vršac and Avala) were grown in two densities (High and Low). As expected, density had significant effect on most of measured traits and that effect was concordant with Shade avoidance syndrome predictions. Genetic differences between populations both in mean trait values and in plastic responses to density were also detected. Number of leaves and flowers showed plasticity in Avala population only, while shoot weight was plastic in both populations but with greater plasticity in Avala population. Differences between habitats for plant height and number of internodes were present in Vršac population only. Habitat difference in response to density was revealed for seed weight and it was due to lack of response in plants originated from Shade habitat in Vršac population. This study showed that not only populations, but also subpopulations occupying different habitats can differ genetically in their plastic response to density, and that between-habitat differences can be population-specific. The text was submitted by the author in English.  相似文献   

11.
Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F(2)s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F(1)s than F(2)s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal.  相似文献   

12.
Anthropogenic landscapes are associated with biodiversity loss and large shifts in species composition and traits. These changes predict the identities of winners and losers of future global change, and also reveal which environmental variables drive a taxon's response to land use change. We explored how the biodiversity of native bee species changes across forested, agricultural, and urban landscapes. We collected bee community data from 36 sites across a 75,000 km2 region, and analyzed bee abundance, species richness, composition, and life‐history traits. Season‐long bee abundance and richness were not detectably different between natural and anthropogenic landscapes, but community phenologies differed strongly, with an early spring peak followed by decline in forests, and a more extended summer season in agricultural and urban habitats. Bee community composition differed significantly between all three land use types, as did phylogenetic composition. Anthropogenic land use had negative effects on the persistence of several life‐history strategies, including early spring flight season and brood parasitism, which may indicate adaptation to conditions in forest habitat. Overall, anthropogenic communities are not diminished subsets of contemporary natural communities. Rather, forest species do not persist in anthropogenic habitats, but are replaced by different native species and phylogenetic lineages preadapted to open habitats. Characterizing compositional and functional differences is crucial for understanding land use as a global change driver across large regional scales.  相似文献   

13.
In the South American temperate evergreen rainforest (Valdivian forest), invasive plants are mainly restricted to open sites, being rare in the shaded understory. This is consistent with the notion of closed-canopy forests as communities relatively resistant to plant invasions. However, alien plants able to develop shade tolerance could be a threat to this unique forest. Phenotypic plasticity and local adaptation are two mechanisms enhancing invasiveness. Phenotypic plasticity can promote local adaptation by facilitating the establishment and persistence of invasive species in novel environments. We investigated the role of these processes in the recent colonization of Valdivian forest understory by the perennial alien herb Prunella vulgaris from nearby populations in open sites. Using reciprocal transplants, we found local adaptation between populations. Field data showed that the shade environment selected for taller plants and greater specific leaf areas. We found population differentiation and within-population genetic variation in both mean values and reaction norms to light variation of several ecophysiological traits in common gardens from seeds collected in sun and shade populations. The colonization of the forest resulted in a reduction of plastic responses to light variation, which is consistent with the occurrence of genetic assimilation and suggests that P. vulgaris individuals adapted to the shade have reduced probabilities to return to open sites. All results taken together confirm the potential for rapid evolution of shade tolerance in P. vulgaris and suggest that this alien species may pose a threat to the native understory flora of Valdivian forest.  相似文献   

14.
1. Native crayfishes are often extirpated from portions of their range because of interactions with invasive species, anthropogenic alterations to environmental conditions or a combination of these factors. Our goal was to identify coarse‐scale natural and anthropogenic factors related to the current distributions of the invasive crayfish, Orconectes hylas, and two endemic crayfishes, Orconectes peruncus and Orconectes quadruncus in the St. Francis River drainage, Missouri, U.S.A. and to provide wider insights into the potential role of anthropogenic factors in facilitating species displacement. 2. We used classification trees to model coarse‐scale natural and anthropogenic environmental factors and their relation to the presence or absence of each species. Model results were then used to predict probability of presence for each species within each stream segment throughout the entire St. Francis River drainage. 3. Factors related to geology and soils were the best predictors of species distributions. A dichotomy of these factors explained much of the discrete distributions of the two native species. Agricultural‐related factors were identified as the most influential anthropogenic activity related to species distributions. All associations between the invasive species and anthropogenic factors were negative which suggested the invader was not likely to establish in heavily impacted areas. Overall, our models had high correct classification rates, and we were able to reliably predict the presence of the invader in the invaded drainage. 4. Given the negative associations of the invader with anthropogenic alterations at a coarse spatial scale, we believe other mechanisms are likely to be responsible for the widespread displacement of the two native species. These findings can be used to assist in conservation activities such as creation of refugia for native species and may direct future research to identify the mechanism(s) of species displacement.  相似文献   

15.
Theoretical and empirical research has demonstrated that phenotypically plastic responses to one environment are dependent on other environmental attributes. Such research is critical considering the complexity of natural habitats, yet few studies have examined how multiple environments affect patterns of plasticity and the adaptiveness of the resulting phenotypes within complex habitats. The present study examines how wood frog (Rana sylvatica) tadpoles alter their behavioural and morphological phenotypes in response to predation risk from larval diving beetles (Dytiscus spp.), competition from conspecifics, and physical structural complexity. It also tests whether structure affects selection intensities by Dytiscus larvae on tadpole morphological traits. Predation risk and competition induced typical changes to tadpole behaviour and morphology. Structure did not induce changes to any phenotype, nor did it interact with predation risk or competition in affecting phenotypes. Furthermore, structure did not affect the predator selection intensities on any morphological trait. Dytiscus larvae selected for shallow, short tailfins, and large tail muscles, yet tadpoles only developed deep tail muscles when raised in the presence of predator cues. These apparently maladaptive responses may have been a result of correlations between phenotypes. The present study expands plasticity research by examining the adaptiveness of plastic responses in complex environments. Additionally, the present study demonstrates that not all environments induce plastic responses. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 853–863.  相似文献   

16.
Plants from Open and Shade habitats in two natural populations (Vrsac and Avala) were grown in two densities (High and Low). As expected, density had significant effect on most of measured traits and that effect was concordant with Shade avoidance syndrome predictions. Genetic differences between populations both in mean trait values and in plastic responses to density were also detected. Number of leaves and flowers showed plasticity in Avala population only, while shoot weight was plastic in both populations but with greater plasticity in Avala population. Differences between habitats for plant height and number of internodes were present in Vrsac population only. Habitat difference in response to density was revealed for seed weight and it was due to lack of response in plants originated from Shade habitat in Vrsac population. This study showed that not only populations, but also subpopulations occupying different habitats can differ genetically in their plastic response to density, and that between habitat differences can be population-specific.  相似文献   

17.
18.
19.
Understanding which environmental variables and traits underlie adaptation to harsh environments is difficult because many traits evolve simultaneously as populations or species diverge. Here, we investigate the ecological variables and traits that underlie Mimulus laciniatus’ adaptation to granite outcrops compared to its sympatric, mesic‐adapted progenitor, Mimulus guttatus. We use fine‐scale measurements of soil moisture and herbivory to examine differences in selective forces between the species’ habitats, and measure selection on flowering time, flower size, plant height, and leaf shape in a reciprocal transplant using M. laciniatus × M. guttatus F4 hybrids. We find that differences in drought and herbivory drive survival differences between habitats, that M. laciniatus and M. guttatus are each better adapted to their native habitat, and differential habitat selection on flowering time, plant stature, and leaf shape. Although early flowering time, small stature, and lobed leaf shape underlie plant fitness in M. laciniatus’ seasonally dry environment, increased plant size is advantageous in a competitive mesic environment replete with herbivores like M. guttatus’. Given that we observed divergent selection between habitats in the direction of species differences, we conclude that adaptation to different microhabitats is an important component of reproductive isolation in this sympatric species pair.  相似文献   

20.
Morphological data from two Iris pumila populations (measured on native clones, on their replants into the same habitat, and on their transplants into alternative habitat) were combined with native clones spatial position and spatial autocorrelations (SA) were calculated. Naturally growing I. pumila clones revealed significant SA that were positive on small distances and negative on medium ones in both open Hillock and shaded Woodland populations. No significant SA were detected when calculated with original clone positions, but with morphometric data from replants into the experimental plot in the same habitat. Some significant SA were, however, detected when morphometric data from transplants to alternative habitat were used. Detected SA on I. pumila clones were primarily a consequence of spatial structuring of environmental factors but also, in a lesser degree, a result of genetic spatial arrangements (most probably due to patterns of gene flow). The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号