首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The content of decarboxylated S-adenosylmethionine (AdoMet) in transformed mouse fibroblasts (SV-3T3 cells) was increased 500-fold to about 0.4fmol/cell when ornithine decarboxylase was inhibited by α-difluoromethylornithine. This increase was due to the absence of putrescine and spermidine, which serve as substrates for aminopropyltransferases with decarboxylated AdoMet as an aminopropyl donor, and to the enhanced activity of AdoMet decarboxylase brought about by depletion of spermidine. The increase in decarboxylated AdoMet content was abolished by addition of putrescine, but not by 1,3-diaminopropane. 2. 5′-Methylthiotubercidin also increased decarboxylated AdoMet content, presumably by direct inhibition of aminopropyl-transferase activities, but the increase in its content and the decline in spermidine content were much less than those produced by α-difluoromethylornithine. 3. Decarboxylated AdoMet content of regenerating rat liver was measured in rats treated with inhibitors of ornithine decarboxylase. The content was increased by 60% 32h after partial hepatectomy in control rats, by 90% when α-difluoromethylornithine was given to the partially hepatectomized rats, and by 330% when 1,3-diaminopropane was used to inhibit putrescine and spermidine synthesis. After 48h of exposure to 1,3-diaminopropane, which completely prevented the increase in spermidine after partial hepatectomy, there was a 5-fold rise in hepatic decarboxylated AdoMet concentration. These increases were prevented by treatment with putrescine or with methylglyoxal bis(guanylhydrazone), an inhibitor of AdoMet decarboxylase. 4. These results show that changes in AdoMet metabolism result from the administration of specific inhibitors of polyamine synthesis. The possible consequences of the accumulation of decarboxylated AdoMet, which could, for example, interfere with normal cellular methylation or lead to depletion of cellular adenine nucleotides, should be considered in the interpretation of results obtained with such inhibitors.  相似文献   

2.
In rat hepatoma tumor (HTC) cells 1,3 diaminopropane and cadaverine induced the ornithine decarboxylase antizyme as well as the end product of the ornithine decarboxylase reaction putrescine. Although at equal exogenous concentrations (10?3M) the two non-physiological diamines penetrated the cells as effectively as putrescine; they decreased cellular ornithine decarboxylase considerably less rapidly than the naturally present diamine. Cell extracts treated with high concentrations of 1,3 diaminopropane and putrescine, and which as a result had a high specific activity of ornithine decarboxylase antizyme, were chromatographed on a superfine Sephadex G-75 column in the presence of 250 mM NaCl. No ornithine decarboxylase-antizyme complex could be detected indicating the original decrease of ornithine decarboxylase in the cells was likely due to some mechanism other than antizyme. These results indicate that 1,3 diaminopropane and cadaverine probably can act on ornithine decarboxylase, like putrescine, by two distinct regulatory mechanisms.  相似文献   

3.
Several aspects of polyamine biosynthesis were compared in low-passage hamster embryo fibroblasts and transformed hamster fibroblasts. Earlier studies had demonstrated a larger and longer-lasting induction of ornithine decarboxylase activity in transformed cells than in hamster embryo fibroblasts. The increases in intracellular polyamine concentrations after serum stimulation were much greater in chemically transformed HE68BP cells than in normal hamster fibroblasts. Treatment of confluent cultures with the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, greatly potentiated ornithine decarboxylase induction by fresh medium in HE68BP cells, but not in hamster fibroblasts. A similar synergistic effect was observed when transformed cells, but not normal cells, were treated with the combination of insulin and promoter. HE68BP cells were capable of growth in medium containing serum concentrations as low as 0.5%, whereas only concentrations of 5% or more supported the growth of hamster embryo fibroblasts. Low serum concentrations induced ornithine decarboxylase in HE68BP cells but not in normal cells, and a given serum concentration always produced a greater induction of ornithine decarboxylase in transformed than in normal cells.Another enzyme involved in polyamine synthesis, S-adenosyl-L-methionine decarboxylase was induced in normal and transformed cells by serum-containing medium or tetradecanoylphorbol acetate, but in contrast to ornithine decarboxylase, no synergistic effect was seen in transformed cells exposed to the combination of fresh medium and the tumor promoter. A macromolecular inhibitor of ornithine decarboxylase was readily detected in hamster fibroblast cultures treated with high concentrations of putrescine, but little or none of this inhibitor was found in HE68BP cultures. In both cell types, however, serum induction of ornithine decarboxylase was inhibited under conditions of excess putrescine.The results demonstrate several differences between normal and transformed hamster cells in the regulation of polyamine synthesis.  相似文献   

4.
Extremely low concentrations of putrescine, spermidine and spermine added to the extracellular medium of cultures of mammalian cells inhibit the induction of ornithine decarboxylase activity despite 100- to 1,000-fold greater intracellular polyamine concentrations. The diamines, 1,2-diaminoethane, 1,3-diaminopropane, 1,5-diaminopentane, 1,7-diaminoheptane, 1,10-diaminodecane, 1,12-diaminododecane also inhibit ornithine decarboxylase at all concentrations tested (greater than 10?6 M). In contrast, 10?6 M to 10 ?3 M 1,8-diaminooctane, the alkyl analog of spermidine, enhances ornithine decarboxylase activity. The concentraton of putrescine required to inhibit the activity of ornithine decarboxylase by 50% is a characteristic of each cell line; however, it varies by as much as 1,000-fold among the five cell lines we have tested (L1210 leukemic, H35 hepatoma, N18 neuroblastoma, W256 carcinosarcoma and 3T3 fibroblasts). The antizyme to ornithine decarboxylase can be induced in all these cells by high (di)(poly)amine concentrations. Based on these and other experiments we suggest a working hypothesis: that the polyamines regulate ornithine decarboxylase activity through two different sites that may be interrelated; a sensitive membrane-mediated site that responds to minute fluctuations of extracellular polyamine levels and a coarse site which may be intracellular or membrane associated that responds to larger fluctuations of intracellular polyamine levels. The consequences of such a control mechanism operating within the whole organism are discussed.  相似文献   

5.
1. Ornithine decarboxylase activity is stimulated in high-density HeLa-cell cultures by dilution of or replacement of spent culture medium with fresh medium containing 10% (v/v) horse serum. 2. After stimulation, ornithine decarboxylase activity reaches a peak at 4–6h, then rapidly declines to the low enzyme activity characteristic of quiescent cultures, where it remains during the remainder of the cell cycle. 3. The stimulation of ornithine decarboxylase is eliminated by the addition of 0.5μm-spermine or -spermidine or 10μm-putrescine to the HeLa-cell cultures at the time of re-feeding with fresh medium. Much higher concentrations (1mm) of the non-physiological diamines, 1,3-diamino-propane or 1,3-diamino-2-hydroxypropane, are required to eliminate the stimulation of ornithine decarboxylase in re-fed HeLa-cell cultures. 4. A heat-labile, non-diffusible inhibitor, comparable with the inhibitory protein ornithine decarboxylase antizyme, is induced in HeLa cells by the addition of exogenous diamines or polyamines. 5. Intracellular putrescine is eliminated, intracellular spermidine and spermine are severely decreased and proliferation of HeLa cells is inhibited when cultures are maintained for 48h in the presence of the non-physiological inducer of ornithine decarboxylase antizyme, 1,3-diamino-2-hydroxypropane. Exogenous putrescine, a physiological inducer of the antizyme, does not decrease intracellular polyamines or interfere with proliferation of HeLa cells.  相似文献   

6.
1. The activity of ornithine decarboxylase in the liver and kidneys of rats maintained on a cyclical regimen of protein-free and protein-containing diets was investigated. There was a daily activation of the enzyme in response to the feeding of protein after 3 days feeding of protein-free diet. 2. The activation of ornithine decarboxylase in the liver and kidneys of rats re-fed on protein was demonstrable throughout 16 cycles of alternating 3-day periods of protein-free and protein-containing diets. The magnitude of the activation in the kidneys diminished from 20-fold stimulation in the first cycle to 5-fold stimulation (compared with animals fed with protein-free diet) in the later cycles of protein re-feeding. The activation of the enzyme in liver was decreased from 20-fold stimulation in the first cycle to approx. 10-fold stimulation in later cycles. 3. The concentration of spermidine was increased by approx. 50% in the liver of animals during cycling from protein-free to protein-containing diets. Spermine was unchanged, and putrescine was maintained at a low concentration approx. one-fifth to one-tenth that of spermidine after protein re-feeding. 4. The incorporation of [(3)H]thymidine into liver DNA was increased 10-fold in animals re-fed with protein compared with animals receiving protein-free diets. 5. The activation of ornithine decarboxylase by re-feeding of protein was inhibited 90% by the injection of propane-1,3-diamine during re-feeding. The stimulation of DNA synthesis was inhibited 60% by multiple injections of propane-1,3-diamine during the re-feeding of protein.  相似文献   

7.
Rat liver ornithine decarboxylase activity was decreased by administration of putrescine (1,4-diaminobutane) or other diamines, including 1,3-diaminopropane, 1,5-diaminopentane and 1,6-diaminohexane. This effect was seen in control rats and in rats in which hepatic ornithine decarboxylase activity had been increased by administration of growth hormone (somatotropin) or thioacetamide. Loss of activity was not dependent on the conversion of putrescine into polyamines and was short-lived. Within 6h after intraperitoneal administration of 0.8 mmol/kg body wt., ornithine decarboxylase activity had returned to normal values. This return correlated with the rapid loss of the diamines from the liver, and the decrease in activity could be slightly prolonged by treatment with aminoguanidine, a diamine oxidase inhibitor. A decrease in ornithine decarboxylase activity by these diamines was accompanied by the accumulation in the liver of a nondiffusible inhibitor that decreased the activity of a purified ornithine decarboxylase preparation. The possibility that administration of non-physiological diamines that are not converted into polyamines might be useful for the inhibition of polyamine synthesis is discussed.  相似文献   

8.
1. The activities of l-ornithine decarboxylase (EC 4.1.1.17) and S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50) were dramatically enhanced in both the ventral prostate and the seminal vesicle of castrated rats in response to androgenic stimulation. The time course of the stimulation of ornithine decarboxylase together with the quantitatively different response of adenosylmethionine decarboxylase to testosterone treatment in the prostate gland and seminal vesicle indicated that the enhancement in polyamine synthesis in the ventral prostate may reflect both cellular proliferation and the restoration of the secretory functions of the organ. In the seminal vesicle, however, the stimulation of the polyamine-biosynthetic pathway more closely resembled the pattern found in other rat tissues, such as regenerating liver, undergoing compensatory growth. 2. Ornithine decarboxylase activity in the ventral prostate and especially in the seminal vesicle of sexually mature rat was diminished in vivo by various short-chain diamines such as 1,2-diaminoethane, 1,3-diaminopropane and putrescine (1,4-diaminobutane). These diamines had no direct effect on the enzyme activity in vitro. 3. In contrast with the marginal decrease in ornithine decarboxylase activity produced by diaminoethane in the ventral prostate of non-castrated animals, repeated injections of the latter amine completely prevented the intense stimulation of the enzyme activity in the ventral prostate and seminal vesicle of castrated rats at 24h after the commencement of testosterone treatment. 4. The decrease in ornithine decarboxylase activity observed after injections of diamines (putrescine) in the ventral prostate was apparently associated with a similar decrease in the amount of immunoreactive protein as revealed by immunotitration of the enzyme with antiserum to rat ornithine decarboxylase.  相似文献   

9.
The enzyme catalysing the polyamine-stimulated modification of Physarum ornithine decarboxylase in vivo was partially purified and its activity on purified ornithine decarboxylase was examined with respect to its specificity for various amines. Spermidine, spermine and several polyamine analogues strongly promoted this reaction in vitro (apparent Km in the 0.1--0.5 mM range), whereas putrescine (apparent Km 5.33 mM) and several related diamines were not nearly as effective. In agreement with this, sensitivity studies performed in vivo also suggested that cellular spermidine, and not putrescine, is critical in modulating ornithine decarboxylase activity by this post-translational control. Unlike putrescine, or other diamines, 1,3-diaminopropane demonstrated a functional similarity to the polyamines in stimulating this reaction. This study has demonstrated a method whereby non-physiological amines capable of depressing ornithine decarboxylase activity by this natural feedback mechanism can be readily identified for further evaluation of their potential use in the experimental and medical control of polyamine biosynthesis.  相似文献   

10.
Tertiary cultures of chick embryo fibroblasts infected and transformed by the wild-type Rous sarcoma virus, when actively growing at 35 degrees C, had higher putrescine levels than the respective uninfected cells. Transformed cells also had much higher specific activity of ornithine decarboxylase (EC 4.1.1.17) than the normal fibroblasts. At 41 degrees C the difference in putrescine levels between the normal and the transformed cells was less marked, and both cell types showed a relative accumulation of spermine. Cultures infected with the NY68 mutant virus, which is temperature-sensitive for transformation, showed at 41 degrees C normal cell morphology and intermediate polyamine patterns, while at 35 degrees C a transformed phenotype was found in both aspects. In shift-down experiments a change towards the permissive temperature pattern of polyamine metabolism was evident within 2-3 h. Difluoromethylornithine, a specific and irreversible inhibitor of ornithine decarboxylase efficiently reduced the enzyme activity as well as the levels of both putrescine and spermidine in all culture types and temperatures. Incubation of Rous sarcoma virus-transformed cells with 3 mM difluoromethylornithine for 36 h did not affect the maintenance of the transformed state. Likewise, when NY68-infected cultures were exposed to difluoromethylornithine at 41 degrees C for 12 h and then shifted down to 35 degrees C, the appearance of the transformed morphology took place concomitantly with that of the control cultures without respective changes in the polyamine levels. This suggests that the transformation-associated pattern of polyamines in chick embryo fibroblasts is not a prerequisite for morphological transformation of these cells.  相似文献   

11.
Effects of S-adenosyl-1,8-diamino-3-thiooctane on polyamine metabolism   总被引:3,自引:0,他引:3  
A E Pegg  K C Tang  J K Coward 《Biochemistry》1982,21(20):5082-5089
Exposure of mammalian cells (transformed mouse fibroblasts or rat hepatoma cells) to S-adenosyl-1,8-diamino-3-thiooctane produced profound changes in the intracellular polyamine content. Putrescine was increased and spermidine was decreased, consistent with the inhibition of spermidine synthase by this compound, which is a potent and specific "transition-state analogue inhibitor" of the isolated enzyme in vitro. The spermine content of the cells was increased by exposure to this drug presumably since spermine synthase was able to use a greater proportion of the available decarboxylated S-adenosylmethionine when spermidine synthase was inhibited. The decarboxylated S-adenosylmethionine content rose substantially because the activity of S-adenosylmethionine decarboxylase was increased in response to the decline in spermidine. These results indicate that S-adenosyl-1,8-diamino-3-thiooctane is taken up by mammalian cells and is an effective inhibitor of spermidine synthase in vivo and that S-adenosylmethionine decarboxylase is regulated by the content of spermidine, but not of spermine. The growth of SV-3T3 cells was substantially reduced in the presence of S-adenosyl-1,8-diamino-3-thiooctane at concentrations of 50 microM or greater. Such inhibition was reversed by the addition of spermidine but not by putrescine. When SV-3T3 cells were exposed to 5 mM alpha-(difluoromethyl)ornithine and 50 microM S-adenosyl-1,8-diamino-3-thiooctane, the content of all polyamines was reduced. Putrescine and spermidine declined by more than 90% and spermine by 80%. Such cells grew very slowly unless spermidine was added.  相似文献   

12.
Putrescine and other amines are known to rapidly reduce or prevent increases in ornithine decarboxylase activity in a number of systems. We have confirmed reports of a nondialyzable inhibitor of the enzyme in serum-starved H-35 hepatoma cells exposed to serum and putrescine. In contrast, we detected little if any nondialyzable inhibitor in serum-limited Swiss 3T3 cells treated similarly. Also, evidence of a dissociable enzyme-inhibitor complex was found in H-35 cells but not in 3T3 cells. These results suggest that assimilated putrescine can reduce ornithine decarboxylase activity by mechanisms not involving a macromolecular inhibitor.  相似文献   

13.
Ornithine decarboxylase activity was assessed in serum-deprived quiescent NIH-3T3 murine fibroblasts after exposure to a variety of growth-promoting factors. Ornithine decarboxylase activity increased after treatment with phorbol 12-myristate 13-acetate (PMA), fetal calf serum, bovine pituitary fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and the synthetic diacyglycerol sn-1,2-dioctanolyglycerol but not after treatment with epidermal growth factor, insulin, 4 alpha-phorbol 12,13-didecanoate, sn-1,2-dibutyrylglycerol, or the calcium ionophore A23187. Activity peaked at 3-4 h and returned to basal levels after 8 h. To determine the importance of protein kinase C in this increase, cells were pretreated with PMA for 16 h to make the cells effectively deficient in protein kinase C; this deficiency was documented by direct measurement of enzyme activity and immunoreactivity. The ornithine decarboxylase response to each mitogen was then compared in cells pretreated with PMA or control conditions. PMA pretreatment abolished the increase in ornithine decarboxylase activity due to additional PMA and decreased but did not eliminate the ability of serum, FGF, and PDGF to cause increases in ornithine decarboxylase activity. Similarly, pretreatment with PMA abolished the ability of additional PMA to increase ornithine decarboxylase mRNA levels but did not prevent the increases in these mRNA levels caused by FGF or serum. These data suggest that the increases in ornithine decarboxylase activity and mRNA levels that occur in quiescent fibroblasts in response to serum, FGF, or PDGF are due to activation of at least two separate pathways, one involving protein kinase C and the other independent of protein kinase C.  相似文献   

14.
1. Ehrlich ascites-carcinoma cells contained relatively high concentrations of spermidine and spermine, but the putrescine content of the washed cells was less than 10% of that of higher polyamines. 2. Ascites-tumour cells likewise exhibited high activities of L-ornithine decarboxylase (EC 4.1.1.17), S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50), spermidine synthase (EC 2.5.1.16) and spermine synthase. 3. During the first days after the inoculation, the polyamine pattern of the ascites cells was characterized by a high molar ratio of spermidine to spermine, which markedly decreased on aging of the cells. 4. Various diamines injected into mice bearing ascites cells rapidly and powerfully decreased ornithine decarboxylase activity in the carcinoma cells, apparently through a mechanism that was not a direct inhibition of the enzyme in vitro. Cadaverine (1,5-diaminopentane) and 1,6-diaminohexane were the most potent inhibitors of ornithine decarboxylase among the amines tested. 5. Chronic treatment of the mice with diamines resulted in a virtually complete disappearance of ornithine decarboxylase activity, and after 24h a significant decline in spermidine accumulation. 6. Cadaverine appeared to be an especially suitable compound for use as an inhibitor of the synthesis of higher polyamines, at least in Ehrlich ascites cells, since this diamine also acted as a competitive inhibitor for putrescine in the spermidine synthase reaction without being incorporated into the higher polyamines.  相似文献   

15.
1. The specificity of rat prostatic spermidine synthase and spermine synthase with respect to the amine acceptor of the propylamine group was studied. 2. Spermidine synthase could use cadaverine (1,5-diaminopentane) instead of putrescine, but the Km for cadaverine was much greater and the rate with 1mM-cadaverine was only 10% of that with putrescine. 1,3-Diaminopropane was even less active (2% of the rate with putrescine) and no other compound tested (including longer alpha,omega-diamines, spermidine and its homologues and monoacetyl derivatives) was active. 3. Spermine synthase was equally specific. The only compounds tested that showed any activity were 1,8-diamino-octane, sym-homospermidine, sym-norspermidine and N-(3-aminopropyl)-cadaverine, which at 1mM gave rates 2, 17, 3 and 4% of the rate with spermidine respectively. 4. The formation of polyamine derivatives of cadaverine and to a very small extent of 1,3-diaminopropane was confirmed by exposing transformed mouse fibroblasts to these diamines when synthesis of putrescine was prevented by alpha-difluoromethylornithine. Under these conditions the cells accumulated significant amounts of N-(3-aminopropyl)cadaverine and NN'-bis(3-aminopropyl)cadaverine when exposed to cadaverine and small amounts of sym-norspermidine and sym-norspermine when exposed to 1,3-diaminopropane.  相似文献   

16.
Ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) has been purified from 3T3- and SV40-transformed 3T3 mouse fibroblasts by affinity chromatography, and the physicochemical properties of the two enzymes compared. Measured properties include molecular weight of the active species, subunit molecular weight and specific activity of the purified enzymes, kinetic parameters, thermostability, degradation rate in vivo and immunological cross-reactivity. Although crude extracts of the transformant possess more ornithine decarboxylase activity per mg of protein than the parent strain, there is no evidence for the appearance of an altered form of the enzyme in these cells. The results reported in the present paper indicate that the increased ornithine decarboxylase activity in the transformed cells is the result of higher enzyme biosynthesis de novo.  相似文献   

17.
A new hydroxycinnamoyl-CoA:putrescine hydroxycinnamoyltransferase (PHT) was detected in two variant lines of Nicotiana tabacum L. (TX1, TX4) accumulating markedly different levels of caffeoylputrescine. The enzyme accepted only the aliphatic diamines putrescine, cadaverine and 1,3-diaminopropane at a ratio of 100:33:8. Caffeoyl- and feruloyl-CoAs were the best acyl donors. The apparent Km-values for caffeoyl-CoA and putrescine were near 3 and 10 micromolar, respectively, at the pH-optimum of 10.0. PHT activity was quite similar in low producing TX1 and high producing TX4 cells, while some other biosynthetic enzymes (phenylalanine ammonia-lyase, ornithine decarboxylase) were greatly enhanced in TX4 cells, suggesting that PHT does not catalyze the rate-limiting step in hydroxycinnamoylputrescine formation.  相似文献   

18.
In liver cells recovering from reversible ischemia the increase in RNA synthesis by isolated nuclei is preceded by activation of ornithine decarboxylase, leading in turn to an increase in putrescine concentration. Treatment of the animals with 1,3-diaminopropane and putrescine prevents ornithine decarboxylase activation but does not hinder the enhancement of RNA synthesis in post-ischemic liver nuclei; therefore, ornithine decarboxylase activation does not seem to be a necessary prerequisite for the increase in RNA synthesis. Hypophysectomy does not prevent the post-ischemic increases of ornithine decarboxylase and RNA synthesis; but pre-treatment of the animals with cycloheximide—which has a dual effect on the activity of ornithine decarboxylase—abolishes the post-ischemic enhancement of RNA synthesis. In contrast with regenerating liver, changes in ornithine decarboxylase activity and putrescine concentrations in reversible ischemia are not associated to changes in S-adenosylmethionine decarboxylase activity and in spermine and spermidine concentrations that seem to be characteristic of tissues where increases in RNA synthesis are followed by DNA synthesis and cell multiplication.  相似文献   

19.
J L Clark  J L Fuller 《Biochemistry》1975,14(20):4403-4409
Addition of putrescine of spermidine prevents the increase in ornithine decarboxylase activity in cultures of 3T3 cells brought about by pituitary growth factors and results in a rapid, specific, and reversible reduction of enzyme activity in cultures previously stimulated by the growth factors. These effects are not due to polyamine toxicity and do not require other organic medium components. The amines apparently share a single carrier-mediated transport system in 3T3 cells. Methylglyoxal bis(guanylhydrazone), an inhibitor of spermidine synthesis from putrescine was found to also inhibit uptake of each amine. Studies with this drug indicate that each amine is effective without further metabolism. Since ornithine decarboxylase activity decays more rapidly in the presence of each polyamine after addition of camptothecin, the major locus of amine action appears to be in the cytoplasm. However, direct inhibition of the enzyme in vivo by assimilated amines appears to account for at most a small part of the reduction in activity, a conclusion supported by the inability to recover activity in vitro. Also, neither amine seems to act by accelerating enzyme inactivation. When amines are removed from the medium, the subsequent recovery of enzyme activity is totally prevented by trichodermin, an inhibitor of protein synthesis, but is only slightly reduced by camptothecin. It is suggested that both putrescine and spermidine reduce ornithine decarboxylase activity by selectively inhibiting translation.  相似文献   

20.
Injections of 1,3-diaminopropane, a close structural analogue of putrescine (1,4-diaminobutane), into partially hepatectomized rats powerfully inhibited ornithine decarboxylase (EC 4.1.1.17) activity in the regenerating liver in vivo. The compound did not have any effect on the enzyme activity in vitro (under assay conditions employed) but appeared to exert an inhibitory influence on the synthesis of ornithine decarboxylase itself.Repeated injections of diaminopropane into rats after partial hepatectomy, starting at the time of the operation and continued until 33 h postoperatively, markedly diminished the stimulation of ornithine decarboxylase activity in the regenerating liver remnant, and completely prevented the increases in hepatic spermidine concentration normally occurring in response to partial hepatectomy.Treatment of the rats with diaminopropane did not depress the activity of adenosylmethionine decarboxylase (EC 4.1.1.50) in the regenerating liver. Nor did the compound have any effect, whatsoever, on the activity of spermidine synthase (EC 2.5.1.16) in vitro, thus obiviously proving that the increased accumulation of liver spermidine after partial hepatectomy primarily depends upon a stimulation of ornithine decarboxylase activity and a concomitant accumulation of putrescine. The results also showed that 1,3-diamino-propane could not replace putrescine in the synthesis of higher polyamines in rat liver. The inhibition of ornithine decarboxylase by diaminopropane thus appears to represent “gratuitous” repression of polyamine biosynthesis and might conceivably be used for studies devoted to the elucidation of the physiological functions of natural polyamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号