首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
cAMP receptor protein (CRP), allosterically activated by cAMP, regulates the expression of several genes in Escherichia coli. As binding of cAMP leads to undefined conformational changes in CRP, we performed a steady-state and time-resolved fluorescence study to show how the binding of the ligand influences the structure and dynamics of the protein. We used CRP mutants containing a single tryptophan residue at position 85 or 13, and fluorescently labeled with 1,5-I-AEDANS attached to Cys178. Binding of cAMP in the CRP-(cAMP)2 complex leads to changes in the Trp13 microenvironment, whereas its binding in the CRP-(cAMP)4 complex alters the surroundings of Trp85. Time-resolved anisotropy measurements indicated that cAMP binding in the CRP-(cAMP)2 complex led to a substantial increase in the rotational mobility of the Trp13 residue. Measurement of fluorescence energy transfer (FRET) between labeled Cys178 and Trp85 showed that the binding of cAMP in the CRP-(cAMP)2 complex caused a substantial increase in FRET efficiency. This indicates a decrease in the distance between the two domains of the protein from 26.6 A in apo-CRP to 18.7 A in the CRP-(cAMP)2 complex. The binding of cAMP in the CRP-(cAMP)4 complex resulted in only a very small increase in FRET efficiency. The average distance between the two domains in CRP-DNA complexes, possessing lac, gal or ICAP sequences, shows an increase, as evidenced by the increase in the average distance between Cys178 and Trp85 to approximately 20 A. The spectral changes observed provide new structural information about the cAMP-induced allosteric activation of the protein.  相似文献   

3.
Dong A  Malecki JM  Lee L  Carpenter JF  Lee JC 《Biochemistry》2002,41(21):6660-6667
Cyclic AMP receptor protein (CRP) regulates the expression of a large number of genes in E. coli. It is activated by cAMP binding, which leads to some yet undefined conformational changes. These changes do not involve significant redistribution of secondary structures. A potential mechanism of activation is a ligand-induced change in structural dynamics. Hence, the cAMP-mediated conformational and structural dynamics changes in the wild-type CRP were investigated using hydrogen-deuterium exchange and Fourier transform infrared spectroscopy. Upon cAMP binding, the two functional domains within the wild-type CRP undergo conformational and structural dynamics changes in two opposite directions. While the smaller DNA-binding domain becomes more flexible, the larger cAMP-binding domain shifts to a less dynamic conformation, evidenced by a faster and a slower amide H-D exchange, respectively. To a lesser extent, binding of cGMP, a nonfunctional analogue of cAMP, also stabilizes the cAMP-binding domain, but it fails to mimic the relaxation effect of cAMP on the DNA-binding domain. Despite changes in the conformation and structural dynamics, cAMP binding does not alter significantly the secondary structural composition of the wild-type CRP. The apparent difference between functional and nonfunctional analogues of cAMP is the ability of cAMP to effect an increase in the dynamic motions of the DNA binding domain.  相似文献   

4.
By labeling adenosine 3′, 5′-cyclic monophosphate (cyclic AMP) with [32P] phosphate and chromatographing it on a thin-layer alumina plate, we have determined the extra- and intracellular amounts of cyclic AMP in an Escherichia coli CRP? mutant (deficient in a cyclic AMP receptor protein) and its isogenic CRP+ cell. The CRP? cell was found to excrete cyclic AMP at an abnormally high rate as compared to the CRP+ cell when growing on glucose or glycerol, which can be correlated with the abnormally high intracellular levels of cyclic AMP in the CRP? cell.  相似文献   

5.
Fic E  Polit A  Wasylewski Z 《Biochemistry》2006,45(2):373-380
The cAMP receptor protein, allosterically activated by cAMP, regulates the expression of more than 100 genes in Escherichia coli. CRP is a homodimer of two-domain subunits. It has been suggested that binding of cAMP to CRP leads to a long-distance signal transduction from the N-terminal cAMP binding domain to the C-terminal domain of the protein responsible for interaction with specific sequences of DNA. In this study, the stopped-flow and time-resolved fluorescence lifetime measurements were used to observe the kinetics of the distance changes between the N-terminal and C-terminal domain of CRP induced by binding of cAMP to high-affinity binding sites. In these measurements, we used the constructed CRP heterodimer, which possesses a single Trp85 residue localized at the N-terminal domain of one CRP subunit, and fluorescently labeled by 1,5-I-AEDANS Cys178 localized at the C-terminal domain of the same subunit or at the opposite one. The F?rster resonance energy transfer method has been used to study the distance changes, induced by binding of cAMP, between Trp85 (fluorescence donor) and Cys178-AEDANS (fluorescence acceptor) in the CRP structure. The obtained results show that the allosteric transitions of CRP at micromolar cAMP concentrations follow the sequential binding model, in which binding of cAMP to high-affinity sites causes a 4 A movement of the C-terminal domain toward N-terminal domains of the protein, with kinetics faster than 2 ms, and CRP adopts the "closed" conformation. This fast process is followed by the slower reorientation of both CRP subunits.  相似文献   

6.
7.
How cyclic AMP and its receptor protein act in Escherichia coli   总被引:24,自引:0,他引:24  
S Adhya  S Garges 《Cell》1982,29(2):287-289
  相似文献   

8.
H Aiba  A Hanamura  T Tobe 《Gene》1989,85(1):91-97
  相似文献   

9.
10.
The monoclonal antibody (mAb) 64D1 was found to inhibit cAMP binding by the cAMP receptor protein (CRP) from Escherichia coli (Li, X.-M., and Krakow, J. S. (1985) J. Biol. Chem. 260, 4378-4383). CRP is relatively resistant to attack by the Staphylococcus aureus V8 protease, chymotrypsin, trypsin, and subtilisin whereas both mAb 64D1-CRP and cAMP-CRP are attacked by these proteases yielding N-terminal core fragments. The fragment patterns resulting from proteolysis of mAb 64D1-CRP and cAMP-CRP differ indicating that the CRP in each complex is in a different conformation. The data presented indicate that the preferred conformation of the antigenic site for mAb 64D1 is present in unliganded CRP. Binding of mAb 64D1 to CRP is inhibited at high cAMP concentration. Formation of a stable cAMP-CRP-lac P+-RNA polymerase open promoter complex resistant to dissociation by mAb 64D1 occurs at a much lower cAMP concentration. The observed increase in resistance to mAb 64D1 may reflect a possible conformational change in CRP effected by contact with RNA polymerase in the open promoter complex.  相似文献   

11.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.  相似文献   

12.
13.
14.
E Heyduk  T Heyduk  J C Lee 《Biochemistry》1992,31(14):3682-3688
Escherichia coli cAMP receptor protein (CRP) is a homodimer in which each subunit is composed of two domains. The C-terminal domain is responsible for DNA recognition, whereas the larger N-terminal domain is involved in cAMP binding. Biochemical and genetic evidence suggests that both intersubunit and interdomain interactions play important roles in the regulatory mechanism of this protein. Essentially all intersubunit contacts occur via a long C-helix which is a part of the N-terminal domain. In this work, intersubunit interactions in CRP were studied with the use of two proteolytic fragments of the protein. Subtilisin digestion produces a fragment (S-CRP) which includes residues 1-117 and in which about 85% of the C-helix is removed, whereas chymotrypsin digestion produces a fragment (CH-CRP) consisting of residues 1-136, in which the whole C-helix is preserved. Both fragments were purified and subjected to functional tests which included cAMP binding, subunit assembly, and hydrodynamic properties in the presence and absence of cAMP. S-CRP binds cAMP with a similar affinity to that of native CRP but with reduced cooperativity. CH-CRP exhibits about 1 order of magnitude tighter binding of cAMP than S-CRP or CRP and the highest degree of negative cooperativity. Both fragments are dimeric with dimerization constants around 10(8) M-1. Ligand binding promotes dimerization and induces a small contraction of both S-CRP and CH-CRP. There is no apparent correlation between dimer stability and cooperativity of ligand binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
18.
Nine hybridoma clones producing antibodies against the Escherichia coli cAMP receptor protein (CRP) have been isolated. Five of the monoclonal antibodies (Class I) had a much higher affinity for native CRP while the remaining four (Class II) bound equally well to native or denatured CRP. Using native N-terminal CRP cores, it was shown that none of the Class I monoclonal antibodies cross-reacted with the 15,000-Da CRP core, and only two bound to the 18,800-Da CRP core. The positions of the antigenic determinants for the Class II monoclonal antibodies were found by Western blotting analysis to reside in the N-proximal region of CRP. Only one monoclonal antibody strongly inhibited cAMP binding by CRP, and this was accompanied by a consequent strong inhibition of both lac DNA binding and abortive initiation by RNA polymerase. Each of the Class I monoclonal antibodies inhibited abortive initiation, and four of these antibodies also blocked the binding of cAMP X CRP to the lac DNA fragment. One Class I and one Class II monoclonal antibody bound to the cAMP X CRP X DNA complex. Two of the Class II monoclonal antibodies were without apparent effect on any of the assays used.  相似文献   

19.
20.
Won HS  Yamazaki T  Lee TW  Yoon MK  Park SH  Kyogoku Y  Lee BJ 《Biochemistry》2000,39(45):13953-13962
Cyclic AMP receptor protein (CRP) plays a key role in the regulation of more than 150 genes. CRP is allosterically activated by cyclic AMP and binds to specific DNA sites. A structural understanding of this allosteric conformational change, which is essential for its function, is still lacking because the structure of apo-CRP has not been solved. Therefore, we performed various NMR experiments to obtain apo-CRP structural data. The secondary structure of apo-CRP was determined by analyses of the NOE connectivities, the amide proton exchange rates, and the (1)H-(15)N steady-state NOE values. A combination of the CSI-method and TALOS prediction was also used to supplement the determination of the secondary structure of apo-CRP. This secondary structure of apo-CRP was compared with the known structure of cyclic AMP-bound CRP. The results suggest that the allosteric conformational change of CRP caused by cyclic AMP binding involves subunit realignment and domain rearrangement, resulting in the exposure of helix F onto the surface of the protein. Additionally, the results of the one-dimensional [(13)C]carbonyl NMR experiments show that the conformational change of CRP caused by the binding of cyclic GMP, an analogue of cyclic AMP, is different from that caused by cyclic AMP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号