共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-K+ , high-Na+ cells of strain RL21a of Neurospora crassa , in steady state with 25 m M Na+ , were used to study K+ /Na+ exchanges in the presence or absence of Ca2+ and Mg2+ . In the presence of Ca2+ and Mg2+ , a low concentration of K+ (0.3 m M ) triggered a rapid exchange, but in the absence of the divalents, a high K+ concentration (30 m M ) was required to initiate the exchange at a rapid rate. In the absence of Ca2+ and Mg2+ , K+ uptake did not occur at low K+ concentration, internal K+ did not regulate Na+ influx in the presence of external K+ , and the efflux of Na+ proceeded at maximum activity at very low-K+ contents. 相似文献
2.
Sugar transport in Neurospora crassa 总被引:18,自引:0,他引:18
G A Scarborough 《The Journal of biological chemistry》1970,245(7):1694-1698
3.
Sorbose transport in Neurospora crassa 总被引:4,自引:0,他引:4
4.
Nitrate uptake in Neurospora crassa has been investigated under various conditions of nitrogen nutrition by measuring the rate of disappearance of nitrate from the medium and by determining mycelial nitrate accumulation. The nitrate transport system is induced by either nitrate or nitrite, but is not present in mycelia grown on ammonia or Casamino Acids. The appearance of nitrate uptake activity is prevented by cycloheximide, puromycin, or 6-methyl purine. The induced nitrate transport system displays a Km for nitrate of 0.25 mM. Nitrate uptake is inhibited by metabolic poisons such as 2,4-dinitrophenol, cyanide, and antimycin A. Furthermore, mycelia can concentrate nitrate 50-fold. Ammonia and nitrite are non-competitive inhibitors with respect to nitrate, with Ki values of 0.13 and 0.17 mM, respectively. Ammonia does not repress the formation of the nitrate transport system. In contrast, the nitrate uptake system is repressed by Casamino Acids. All amino acids individually prevent nitrate accumulation, with the exception of methionine, glutamine, and alanine. The influence of nitrate reduction and the nitrate reductase protein on nitrate transport was investigated in wild-type Neurospora lacking a functional nitrate reductase and in nitrate non-utilizing mutants, nit-1, nit-2, and nit-3. These mycelia contain an inducible nitrate transport system which displays the same characteristics as those found in the wild-type mycelia having the functional nitrate reductase. These findings suggest that nitrate transport is not dependent upon nitrate reduction and that these two processes are separate events in the assimilation of nitrate. 相似文献
5.
A specific fructose uptake system (Km = 0.4 mM) appeared in Neurospora crassa when glucose-grown mycelia were starved. Fructose uptake had kinetics different from those of intramycelial fructose phosphorylation, and uptake appeared to be carrier mediated. The only sugar which competitively inhibited fructose uptake was L-sorbose (Ki = 9 mM). Glucose, 2-deoxyglucose, mannose, and 3-O-methyl glucose were noncompetitive inhibitors of fructose uptake. Incubation of glucose-grown mycelia with glucose, 2-deoxyglucose, or mannose prevented derepression of the fructose transport system, whereas incubation with 3-O-methyl glucose caused the appearance of five times as much fructose uptake activity as did starvation conditions. 相似文献
6.
The increasing amino acid transport activity which occurs during germination of Neurospora crassa is repressed by substrate amino acid. This repression acts on the transport systems similarly to competition in that amino acids within a specific transport class (e.g., basic) repress that system. Repression of the other system (neutral-aromatic) by that amino acid is shown to be repression of the general transport system. The level of repression and the rate of derepression after removal of the amino acid appear to depend on the nonrepressed level and rate. The extent of repression caused by increasing the concentration of the amino acid is shown to be different for two amino acids. A mutant deficient in developmental transport for arginine and phenylalanine contains two mutations. The mutation affecting phenylalanine transport maps on linkage group III and results in an accumulation of phenylalanine in the medium, thus repressing the development of this transport activity.This work was supported in part by a National Institutes of Health, U.S. Public Health Service Traineeship in Genetics (2-T01-GM1316). 相似文献
7.
Levina NN Dunina-Barkovskaya AY Shabala S Lew RR 《The Journal of membrane biology》2002,188(3):213-226
Blue light is the primary entrainment signal for a number of developmental and morphological processes in the lower eucaryote Neurospora crassa. Blue light regulates photoactivation of carotenoid synthesis, conidiation, phototropism of perithecia and circadian rhythms. Changes in the electrical properties of the plasma membrane are one of the fastest responses to blue light irradiation. To enable patch-clamp studies on light-induced ion channel activity, the wall-less slime mutant was used. Patch-clamp experiments were complemented by non-invasive ion-selective measurements of light-induced ion fluxes of slime cells using the vibrating probe technique. Blue light usually caused a decrease in conductance within 2-5 minutes at both negative and positive voltages, and a negative shift in the reversal potential in whole-cell patch-clamp measurements. Both K+ and Cl- channels contribute to the inward and outward currents, based on the effects of TEA (10 mM) and DIDS (500 microM). However, the negative shift in the reversal potential indicates that under blue light the Cl- conductance becomes dominant in the electrical properties of the slime cells due to a decrease of K+ conductance. The ion-selective probe revealed that blue light induced the following changes in the net ion fluxes within 5 minutes: 1) decrease in H+ influx; 2) increase in K+ efflux; and 3) increase in Cl- influx. Ca2+ flux was unchanged. Therefore, blue light regulates an ensemble of transport processes: H+, Cl-, and K+ transport. 相似文献
8.
Two filamentous, nitrogen fixing cyanobacteria were examined for their salt tolerance and sodium (Na+) transport.Anabaena torulosa, a saline form, grew efficiently and fixed nitrogen even at 150 mM salt (NaCl) concentration while,Anabaena L-31, a fresh water cyanobacterium, failed to grow beyond 35 mM NaCl.Anabaena torulosa showed a rapidly saturating kinetics of Na+ transport with a high affinity for Na+
(K
m, 0.3 mM).Anabaena L-31 had a much lower affinity for Na+
(Km, 2.8 mM) thanAnabaena torulosa and the pattern of uptake was somewhat different. BothAnabaena spp. exhibited an active Na+ extrusion which seems to be mediated by a Na+-K+ ATPase and aided by oxidative phosphorylation.Anabaena L-31 was found to retain much more intracellular Na+ thanAnabaena torulosa. The results suggest that the saline form tolerates high Na+ concentrations by curtailing its influx and also by an efficient Na+ extrusion, although these alone may not entirely account for its success in saline environment. 相似文献
9.
The refractive indices of the bilayer-electrolyte system allow the membrane to operate as a light-guide. This system is then able to monitor, optically, the flow of ions across the bilayer. The light is coupled into and decoupled from a spherically bulged bilayer by means of optical, single mode fibers. The light wave travels along the curved bilayer for several millimeters. This light transmission depends critically on the angle of incidence between the fiber axis and the tangent to the film. Three transmission peaks were observed when the angle of incidence was varied between 0° and 90°. The transmitted light intensity can be modulated by the application of an electric potential upon the bilayer. The center peak, with maximum light transmission, appears at an angle of incidence which is defined by the launching geometry. A quadratic field dependence (independent of the polarity) is observed, which originates from changes in the shape of the torus transition region. The transmission of the satellite peaks, which appear just before and after the central peak, can also be modulated by an external potential. This modulation signal reflects a linear dependence on the polarity of the external voltage. The phase of the modulation signal changes its sign at each satellite peak. It is shown that this modulation signal originates from the bimolecular area of the lipid film. We present evidence that this transmission modulation occurs as a result of ion transport through the lipid film. This provides the basis for the use of wave-guide spectroscopy to investigate membrane ionic fluxes. 相似文献
10.
Sugar uptake systems in Neurospora crassa are catabolically repressed by glucose. Synthesis of a low K(m) glucose uptake system (system II) in Neurospora is derepressed during starvation for an externally supplied source of carbon and energy. Fasting also results in the derepression of uptake systems for fructose, galactose, and lactose. In contrast to the repression observed when cells were grown on glucose, sucrose, or fructose, system II was not repressed by growth on tryptone and casein hydrolysate. System II was inactivated in the presence of 0.1 m glucose and glucose plus cycloheximide but not by cycloheximide alone. Inactivation followed first-order kinetics with a half-time of 40 min. The addition of glycerol to the uptake medium had no significant effect on the kinetics of 3-0-methyl glucose uptake, suggesting that the system was not feedback inhibitable by catabolites of glycerol metabolism. 相似文献
11.
In this paper is presented an investigation of the influence of the internal structure of pores in membranes on a) the time dependent macroscopic relaxation current after a voltage jump, b) the macroscopic frequency dependent admittance and c) the microscopic current fluctuations around stationary (nonequilibrium) states. All these quantities are determined by the time dependent transport equations, which are calculated with the use of the eigenvectors and eigenvalues of the matrix of coefficients, occurring in the transport equations. Numerical calculations for channels with up to 31 barriers are presented. The treatment of the fluctuations is done with the use of a general approach to nonequilibrium transport noise recently developed by one of the authors. It is shown that the influence of the internal barrier structure as, e.g., the height of central or decentral barriers in the pores is of great complexity. Nevertheless we hope that the calculations lead to a better understanding especially of the microscopic nonequilibrium transport fluctuations in complex systems.This work has been supported by the Deutsche Forschungsgemeinschaft 相似文献
12.
Active transport of L-aspartic acid in Neurospora crassa 总被引:4,自引:0,他引:4
13.
Acidic amino acid transport in Neurospora crassa mycelia 总被引:2,自引:0,他引:2
14.
Hypoxanthine uptake and hypoxanthine phosphoribosyltransferase activity (EC 2.4.2.8) were determined in germinated conidia from the adenine auxotrophic strains ad-1 and ad-8 and the double mutant strain ad-1 ad-8. The mutant strain ad-1 appears to lack aminoimidazolecarboximide ribonucleotide formyltransferase (EC 2.1.2.3) or inosine 5'monophosphate cyclohydrolase (EC 3.5.1.10) activities, or both, whereas the ad-8 strain lacks adenylosuccinate synthase activity (EC 6.3.4.4). Normal (or wild-type) hypoxanthine transport capacity was found to the ad-1 conidia, whereas the ad-8 strains failed to take up any hypoxanthine. The double mutant strains showed intermediate transport capacities. Similar results were obtained for hypoxanthine phosphoribosyl-transferase activity assayed in germinated conidia. The ad-1 strain showed greatest activity, the ad-8 strain showed the least activity, and the double mutant strain showed intermediate activity levels. Ion-exchange chromatography of the growth media revealed that in the presence of NH+/4, the ad-8 strain excreted hypoxanthine or inosine, the ad-1 strain did not excrete any purines, and the ad-1 ad-8 double mutant strain excreted uric acid. In the absence of NH+/4, none of the strains excreted any detectable purine compounds. 相似文献
15.
16.
Javier García-Sancho Mayte Montero Javier Alvarez Rosalba I. Fonteriz Ana Sanchez 《Bioelectromagnetics》1994,15(6):579-588
We have investigated the effects of sinusoidal electromagnetic fields (EMF) on ion transport (Ca2+, Na+, K+, and H+) in several cell types (red blood cells, thymocytes, Ehrlich ascites tumor cells, and HL60 and U937 human leukemia cells). The effects on the uptake of radioactive tracers as well as on the cytosolic Ca2+ concentration ([Ca2+]i), the intracellular pH (pHi), and the transmembrane potentsial (TMP) were studied. Exposure to EMF at 50 Hz and 100–2000 μT (rms) had no significant effects on any of these parameters. Exposure to EMF of 20–1200 μT (rms) at the estimated cyclotron magnetic resonance frequencies for the respective ions had no significant effects except for a 12–32% increase of the uptake of 42K within a window at 14.5–15.5 Hz and 100–200 μT (rms), which was found in U937 and Ehrlich cells but not in the other cell types. © 1994 Wiley-Liss, Inc. 相似文献
17.
Summary Lysine-valinomycin and two N-acyl derivatives are compared with respect to their potency to transport Rb+ ions across thin lipid membranes. Lysine-valinomycin acts as a neutral ion carrier only above a pH of about 7 of the aqueous solutions, while at lower pH the molecules seem to be positively charged due to a protonation of the -NH2 group of the lysine residue.A kinetic analysis based on voltage jump relaxation experiments and on the nonlinearity of the current-voltage characteristics showed that the conductance increment per carrier molecule for uncharged lysine-valinomycin is similar to that of natural valinomycin. The attachment of a rather bulky side group such as the dansyl or para-nitrobenzyloxycarbonyl group reduced by approximately one order of magnitude.Some of the relaxation data of the valinomycin analogues were influenced by an unspedfic relaxation of the pure lipid membrane. This structural relaxation represents a limitation to the possibility of analyzing specific transport systems in thin lipid membranes by the voltage jump or charge pulse techniques. It is shown that the time dependence of this structural relaxation — which was first published by Sargent (1975) — is at variance with a three capacitor equivalent circuit of the membrane, which was suggested by Coster and Smith (1974) on the basis of a.c. measurements. A modified equivalent circuit has been found to represent a satisfactory analogue for the current relaxation in the presence of valinomycin. It turned out, however, that such an equivalent circuit provides little insight into the molecular mechanism of transport. 相似文献
18.
Lew RR 《Journal of experimental botany》2007,58(12):3475-3481
Voltage dependence of ionic currents and ion fluxes in a walled, turgor-regulating cell were measured in Neurospora crassa. The hyphal morphology of the model organism Neurospora simplifies cable analysis of ionic currents to determine current density for quantitative comparisons with ion fluxes. The ion fluxes were measured directly and non-invasively with self-referencing ion-selective microelectrodes. Four ions (H(+), Ca(2+), K(+), and Cl(-)) were examined. H(+) net uptake and Ca(2+) net release were small (10.2 nmol m(-2) s(-1) and 1.1 nmol m(-2) s(-1), respectively) and voltage independent. K(+) and Cl(-) fluxes were larger and voltage dependent. Maximal K(+) net release ( approximately 1440 nmol m(-2) s(-1)) was observed at positive voltages (+15 mV), while maximal Cl(-) net release ( approximately 905 nmol m(-2) s(-1)) was observed at negative voltage (-210 mV). A possible function of the net outward K(+) and Cl(-) fluxes is regulation of the plasma membrane potential. Total ion fluxes were 37-58% of the total ionic current density (about +/-244 mA m(-2), equivalent to +/-2500 nmol m(-2) s(-1), at 0 mV and -200 mV) so other ions must contribute significantly to the ionic currents. 相似文献
19.
Janos K. Lanyi 《Journal of cellular biochemistry》1980,13(1):83-92
Light-induced sodium extrusion from H halobium cell envelope vesicles proceeds largely through an uncoupler-sensitive pathway involving bacteriorhodopsin and a proton/sodium antiporter. Vesicles from bacteriorhodopsin-negative strains also extrude sodium ions during illumination, but this transport is not sensitive to uncouplers and has been proposed to involve a light-energized primary sodium pump. Proton uptake in such vesicles is passive, and under steady-state illumination the large electrical potential (negative inside) is just balanced by a pH difference (acid inside), so that the protonmotive force is near zero. Action spectra indicated that this effect of illumination is attributable to a pigment absorbing near 585 nm (of 568 for bacteriorhodopsin). Bleaching of the vesicles by prolonged illumination with hydroxylamine results in inactivation of the transport; retinal addition causes partial return of the activity. Retinal addition also causes the appearance of an absorption peak at 588 nm, while the absorption of free retinal decreases. The 588 nm pigment is present in very small quantities (0.13 nmole/mg protein), and behaves differently from bacteriorhodopsin in a number of respects. Vesicles can be prepared from bacteriorhodopsin-containing H halobium strains in which primary transport for both protons and sodium can be observed. Both pumps appear to cause the outward transport of the cations. The observations indicate the existence of a second retinal protein, in addition to bacteriorhodopsin, in H halobium, which is associated with primary sodium translocation. The initial proton uptake normally observed during illumination of whole H halobium cells may therefore be a passive flux in response to the primary sodium extrusion. 相似文献
20.