首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delayed fluorescence (DF) is an excellent marker for evaluating plant photosynthesis. Compared with common methods for measuring the photosynthesis rate based on consumption of CO2, DF technique can quantify the plant photosynthesis capacity more accurately and faster under its physiological status with less interference from the environment. We previously reported a method for measuring photosynthesis using DF of chloroplast [Wang, C.L., Xing, D., Chen, Q., 2004. Biosens. Bioelectron. 20, 454–459]. In the study, a novel fast and portable photosynthesis capacity biosensor system was developed, which was composed of light-emitting diode lattice as excitation light source, Channel Photomultiplier DC-Module to achieve DF, single-chip microcomputer as control center, hermetic dark sample chamber, battery power supply and CO2, humidity and temperature controller. Compared with our previous work, the system was portable and can directly measure plant photosynthesis capacity in vivo in less than 10 s. A database in the software to carry out data acquisition and processing was developed to translate maximal DF intensity to net photosynthesis rate (Pn). In addition, local-control and remote-control mode can be chosen in the system. To demonstrate the utility of the system, it was applied to evaluate maximum Pn of four different plant species samples (Queen Rape Myrtle (var. rubra), soybean (Lu Hei No. 1), maize (Jin Dan No. 39) and rice (Jing Dao No. 21)) in field. The results were compared with that using commercial photosynthesis system LI-6400 and the uncertainty was less than ±5%. The new principle of photosynthesis measurement is a challenge and breakthrough to conventional method of gas exchange and may be a potential technique of next generation photosynthesis measurement.  相似文献   

2.
Photosynthesis is the most important chemical reaction in the world. The measurement of plant photosynthesis rate plays an important role in agriculture. Light-induced delayed fluorescence (DF) in plants is an intrinsic label of the efficiency of charge separation at P680 in photosystem II (PS II). In this paper, we have developed a biosensor that can accurately measure the plant photosynthesis ability by means of DF. Compared with common methods for measuring the photosynthesis rate based on consumption of CO2, the proposed technique can quantify the plant photosynthesis ability with less influence of the environment. The biosensor is an all-weather measuring instrument, it has its own illumination power and utilizes intrinsic DF as the measurement marker. The current investigation has revealed that, there is a good correspondence between the results measured by the biosensor and that by commercially available portable photosynthesis system under controlled conditions. We thus conclude that DF is an excellent marker for evaluating plant photosynthesis ability under its biological status with less interferences of the environment.  相似文献   

3.
Photosynthesis of individual field-grown cotton leaves during ontogeny   总被引:3,自引:0,他引:3  
Photosynthetic characteristics of field-grown cotton (Gossypium hirsutum L.) leaves were determined at several insertion levels within the canopy during the growing season. Single-leaf measurements of net photosynthesis (Pn), stomatal conductance to CO2 (gs·CO2), substomatal CO2, leaf area expansion, leaf nitrogen, and light intensity (PPFD) were recorded for undisturbed leaves within the crop canopy at 3–4 day intervals during the development of all leaves at main-stem nodes 8, 10, and 12. Patterns of Pn during leaf ontogeny exhibited three distinct phases; a rapid increase to maximum at 16–20 days after leaf unfolding, a relatively short plateau, and a period of linear decline to negligible Pn at 60–65 days. Analysis of the parameters which contributed to the rise and fall pattern of Pn with leaf age indicated the primary involvement of leaf area expansion, leaf nitrogen, PPFD, and gs·CO2 in this process. The response of Pn and gs·CO2 to incident PPFD conditions during canopy development was highly age dependent. For leaves less than 16 days old, the patterns of Pn and gs·CO2 were largely controlled by non-PPFD factors, while for older leaves Pn and gs·CO2 were more closely coupled to PPFD-mediated processes. Maximum values of Pn were not significantly different for any of the leaves monitored in this study, however, those leaves at main-stem node 8 did possess a significantly diminished photosynthetic capacity with age compared to upper canopy leaves. This accelerated decline in Pn could not be explained by age-related variations in gs·CO2 since all leaves showed similar changes in gs·CO2 with leaf age.Abbreviations gs·CO2 stomatal conductance to CO2 - Pn net photosynthesis - PPFD photosynthetic photon flux density  相似文献   

4.
Summary During five different periods between Nov. 1982 and Aug. 1983, the diurnal patterns exhibited in photosynthetic CO2 uptake and stomatal conductance were observed under natural conditions on twigs of Cistus salvifolius, a Mediterranean semi-deciduous shrub which retains a significant proportion of its leaves through the summer drought. During the same periods, net photosynthesis at saturating CO2 partial pressure was measured on the same twigs as a function of irradiance at different temperatures. From these data, photosynthetic capacity, defined here as the CO2- and light-saturated net photosynthesis rate, was obtained as a function of leaf temperature. C. salvifolius is a winter growing species, shoot growth being initiated in Nov. and continuing through May. Photosynthetic capacity was quite high in Nov., March and June, exceeding 40 mol m-2 s-1 at optimum temperature. In Dec., photosynthetic capacity was somewhat reduced, perhaps due to low night-time temperatures (<5°C) during the measurement period. In Aug., capacity in oversummering shoots at optimum temperature fell to less than 8 mol m-2 s-1, due to water trees and perhaps leaf aging. Seasonal changes in maximal photosynthetic rates under ambient conditions were similar, and like those found in co-occurring evergreen sclerophylls. Like the evergreens, Cistus demonstrated considerable stomatal control of transpirational water loss, particularly in oversummering leaves. During each measurement period except Aug. when capacity was quite low, the maximum rates of net photosynthesis measured under ambient conditions were less than half the measured photosynthetic capacities at comparable temperatures, suggesting an apparent excess nitrogen investment in the photosynthetic apparatus.  相似文献   

5.
Chloroplasts are one of the most susceptible systems to salt and osmotic stresses. Based on quantitative measurements of delayed fluorescence (DF) of the chloroplasts, we have investigated the damage to photosynthesis caused by these two kinds of stresses in Arabidopsis seedlings by using a custom-built multi-channel biosensor. Results showed that the DF intensity and net photosynthesis rate (Pn) decreased in a similar way with increasing NaCl or sorbitol concentration. Incubation of the seedlings in 200 mM NaCl induced a rapid and reversible decline and subsequent slow and irreversible loss in both the DF intensity and Pn. The rapid decline was dominantly related to osmotic stress, whereas the slow declines in the DF intensity and Pn were specific to ionic stress and could be reversed to a similar extent by a Na+-channel blocker. The DF intensity and Pn also exhibited a similar response to irradiation light under NaCl or sorbitol stress. All results indicated that the DF intensity correlated well with Pn under salt and osmotic stresses. We thus conclude that DF is an excellent marker for detecting the damage to photosynthesis caused by these two stresses. The mechanism of the correlation between the DF intensity and Pn under salt and osmotic stresses was also analyzed in theory and investigated with experiments by measuring intercellular CO2 concetration (Ci), stomatal conductance (Gs), chlorophyll fluorescence parameter, and chlorophyll content. This proposed DF technique holds the potential to be a useful means for analyzing the dynamics of salt and osmotic stresses in vivo and elucidating the mechanism by which plants respond to stress.  相似文献   

6.
The objective of this study was to determine whether exposure of plants to ozone (O3) increased the foliar levels of glucose, glucose sources, e.g., sucrose and starch, and glucose-6-phosphate (G6P), because in leaf cells, glucose is the precursor of the antioxidant, L-ascorbate, and glucose-6-phosphate is a source of NADPH needed to support antioxidant capacity. A further objective was to establish whether the response of increased levels of glucose, sucrose, starch and G6P in leaves could be correlated with a greater degree of plant tolerance to O3. Four commercially available Spinacia oleracea varieties were screened for tolerance or susceptibility to detrimental effects of O3 employing one 6.5 hour acute exposure to 25O nL O3 L-1 air during the light. One day after the termination of ozonation (29 d post emergence), leaves of the plants were monitored both for damage and for gas exchange characteristics. Cultivar Winter Bloomsdale (cv Winter) leaves were least damaged on a quantitative grading scale. The leaves of cv Nordic, the most susceptible, were approximately 2.5 times more damaged. Photosynthesis (Pn) rates in the ozonated mature leaves of cv Winter were 48.9% less, and in cv Nordic, 66.2% less than in comparable leaves of their non-ozonated controls. Stomatal conductance of leaves of ozonated plants was found not to be a factor in the lower Pn rates in the ozonated plants. At some time points in the light, leaves of ozonated cv Winter plants had significantly higher levels of glucose, sucrose, starch, G6P, G1P, pyruvate and malate than did leaves of ozonated cv Nordic plants. It was concluded that leaves of cv Winter displayed a higher tolerance to ozone mediated stress than those of cv Nordic, in part because they had higher levels of glucose and G6P that could be mobilized during diminished photosynthesis to generate antioxidants (e.g., ascorbate) and reductants (e.g., NADPH). Elevated levels of both pyruvate and malate in the leaves of ozonated cv Winter suggested an increased availability of respiratory substrates to support higher respiratory capacity needed for repair, growth, and maintenance.Abbreviations ADPG-PPiase ADPglucose pyrophosphorylase - ASC L-ascorbic acid - APX ascorbate peroxidase - Ce CO2 concentration in air in the measuring cuvette during photosynthesis measurements - Ci CO2 concentration in the leaf intercellular spaces during photosynthesis measurement - Chl chlorophyll - DHA dehydroascorbic acid - DHA reductase dehydroascorbate reductase - DHAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - Gluc glucose - GR glutathione reductase - Gsw stomatal conductance with units as mmol H2O m-2 s-1 - GSSG oxidized glutathione - GSH reduced glutathione - G1P glucose-1-phosphate - G6P glucose-6-phosphate - G6P dehydrogenase glucose-6-phosphate dehydrogenase - 6PG 6-phosphogluconate - 6PG dehydrogenase 6-phosphogluconate dehydrogenase - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - MAL malate - MDHA reductase monodehydroascorbate reductase - PE post-emergence - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - PYR pyruvate - Pn net CO2 photoas-similation in leaves - PPFD photosynthetic photon flux density with units of mol photons m-2 s-1 - PPRC pentose phosphate reductive cycle - RuBP ribulose-1,5-bisphosphate - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf weight - TCA cycle tricarboxylic acid cycle - Triose-P DHAP+GAP  相似文献   

7.
We investigated the seasonal variability of effects of elevated temperature (+3.5°C), CO2 elevation (700 μmol mol−1) and varying water regimes (high to low water content) on physiological responses and biomass growth of reed canary grass (Phalaris arundinacea L., local field-grown cultivar) grown in a boreal environment. In controlled environment greenhouses, various physiological and growth parameters of grass, i.e., light-saturated net photosynthetic rates (P nmax), water use efficiency (WUE) and optimal photochemical efficiency of photosystem II (F v/F m), and leaf area development and biomass of plant organs (leaf, stem, coarse, and fine root) were measured. During the early measurement periods, elevated temperature enhanced leaf photosynthesis and above-ground biomass of reed canary grass; however, this resulted in earlier senescence and lower biomass at the end of measurement period, compared to ambient temperature. This effect was more pronounced under water limitation. Elevated CO2 enhanced P nmax, WUE, and leaf area and total plant biomass (above- and below-ground) over growing season. The explanation for imbalance between stimulated photosynthesis and increase in above-ground biomass was that CO2 enrichment causes a greater increase in the plant’s root system. The combination of elevated temperature and CO2 slightly increases the growth of plant. Adequate water availability favored photosynthesis and biomass growth of reed canary grass. The temperature- and drought-induced stresses were partially mitigated by elevated CO2. Other cultivars should be tested in order to identify those that are better adapted to elevated temperatures and CO2 and variable water levels.  相似文献   

8.
Single leaf photosynthesis (Pn) and stomatal conductance (Cg) of drought stressed and nonstressed pearl millet [Pennisetum americanum (L.) Leeke] were measured across growth stages to determine if a pattern exists in Pn and Cg during the growing season and to evaluate the influence of air vapor pressure deficit (VPDa) on the seasonal variations of Pn and Cg. Leaf photosynthesis and Cg were measured independently on pearl millet plants grown at the driest (drought stressed) and wettest (nonstressed) ends of a line-source irrigation gradient system. Well defined and predictable variations in both Pn and Cg were found across two growing seasons. Leaf photosynthesis of the nonstressed plants declined from a maximumof 25.8 mol m–2 s–1 at the flag leaf emergence (48 days after planting, DAP) to a minimum of 14.5 mol m–2 s–1 at physiological maturity. Stomatal conductance of the nonstressed plants peaked at the flowering and early grain fill stages and declined as plants approached maturity. In contrast, Pn and Cg of the stressed plants declined from a maximum at flag leaf emergence to a minimum at flowering and increased as plants approached maturity. High VPDa during the flowering and grain fill stages induced stomatal closure and decreased Pn in the stressed plants. High mid-season VPDa did not induce stomatal closure and did not reduce leaf photosynthesis in nonstressed plants. The lack of sensitivity of Pn to VPDa in the nonstressed treatment suggests large air VPD such as that prevalent in southern Arizona does not limit the growth of irrigated pearl millet by limiting CO2 assimilation.Abbreviations Cg stomatal conductance - DAP days after planting - Pn leaf photosynthesis - VPDa air vapor pressure deficit - VPD1-a leaf to air vapor pressure deficit Contribution of the Arizona Agricultural Experimental Station. Research supported in part by INTSORMIL/USAID.  相似文献   

9.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

10.
Effect of fruiting on carbon budgets of apple tree canopies   总被引:1,自引:0,他引:1  
Summary Carbon budgets were calculated from net photosynthesis and dark respiration measurements for canopies of field-grown, 3-year-old apple trees (Malus domestica Borkh.) with maximum leaf areas of 5.4 m2 in a temperature-controlled Perspex tree chamber, measured in situ over 2 years (July 1988 to October 1990) by computerized infrared gas analysis using a dedicated interface and software. Net photosynthesis (Pn) and carbon assimilation per leaf area peaked at respectively 8.3 and 7.7 mol CO2 m–2 s–1 in April. Net photosynthesis (Pn) and dark respiration (Rd) per tree peaked at 3.6 g CO2 tree–1 h–1 (Pn) and 1.2 g CO2 tree–1 h–1 (Rd), equivalent to 4.2 mol CO2 (Pn) and 1.4 mol CO2 (Rd) m–2 s–1 with maximum carbon gain per tree in August and maximum dark respiration per tree in October 1988 and 1989. In May 1990, a tree was deblossomed. Pn (per tree) of the fruiting apple tree canopy exceeded that of the non-fruiting tree by 2–2.5 fold from June to August 1990, attributed to reduced photorespiration (RI), and resulting in a 2-fold carbon gain of the fruiting over the non-fruiting tree. Dark respiration of the fruiting tree canopy progressively exceeded, with increasing sink strength of the fruit, by 51% (June–August), 1.4-fold (September) and 2-fold (October) that of the non-fruiting tree due to leaf (i. e. not fruit) respiration to provide energy (a) to produce and maintain the fruit on the tree and (b) thereafter to facilitate the later carbohydrate translocation into the woody perennial parts of the tree. The fruiting tree reached its optium carbon budget 2–4 weeks earlier (August) then the non-fruiting tree (September 1990). In the winter, the trunk respired 2–100 g CO2 month–1 tree–1. These data represent the first long-term examination of the effect of fruiting without fruit removal which shows increased dark respiration and with the increase progressing as the fruit developed.  相似文献   

11.
The photosynthetic characteristics of coffee ( Coffea arabusta) plantlets cultured in vitro in response to different CO2 concentrations inside the culture vessel and photosynthetic photon flux (PPF) were investigated preliminarily. The estimation of net photosynthetic rate (Pn) of coffee plantlets involved three methods: (1) estimating time courses of actual Pn in situ based on measuring CO2 concentrations inside and outside the vessel during a 45-day period, (2) estimating Pn in situ at different CO2 concentrations and PPFs using the above measuring approach for 10-day and 30-day old in vitro plantlets, and (3) estimating Pn of a single leaf at different CO2 concentrations and PPFs by using a portable photosynthesis measurement system for 45-day old in vitro coffee plantlets. The results showed that coffee plantlets in vitro had relatively high photosynthetic ability and that the Pn increased with the increase in CO2 concentration inside the vessel. The CO2 saturation point of in vitro coffee plantlets was high (4500–5000 μmol mol-1); on the other hand, the PPF saturation point was not so high as compared to some other species, though it increased with increasing CO2 concentration inside the vessel. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
冯晓龙  刘冉  马健  徐柱  王玉刚  孔璐 《生态学报》2021,41(24):9784-9795
植物枝干光合(Pg)固定其自身呼吸所释放的CO2,有效减少植物向大气的CO2排放量。以古尔班通古特沙漠优势木本植物白梭梭(Haloxylon persicum)为研究对象,利用LI-COR 6400便携式光合仪与特制光合叶室(P-Chamber)相结合,观测白梭梭叶片、不同径级枝干的光响应及光合日变化特征;同时监测环境因子(大气温湿度、光合有效辐射、土壤温度及含水量等)与叶片/枝干性状指标(叶绿素含量、含水量、干物质含量、碳/氮含量等),揭示叶片/枝干光合的主要影响因子;采用破坏性取样,量化个体水平上叶片与枝干的总表面积,阐明枝干光合对植株个体碳平衡的贡献。研究结果显示:(1)白梭梭叶片叶绿素含量是枝干叶绿素含量的12-16倍,各径级枝干叶绿素含量差异不显著;(2)枝干光饱和点低于叶片,枝干不同径级(由粗至细),暗呼吸速率和枝干光合逐渐减小;(3)光合有效辐射、土壤含水量和空气温湿度是影响叶片光合的主要因子,对枝干光合无显著影响;(4)枝干光合可以固定其自身呼吸产生CO2的73%,最高可达90%,枝干光合固定CO2约占个体水平固碳量的15.4%。研究结果表明,忽视枝干光合的贡献来预测未来气候变化背景下荒漠生态系统碳过程,可能存在根本性缺陷,并且在估算枝干呼吸时,需要考虑枝干是否存在光合作用,以提高枝干呼吸的准确性。  相似文献   

13.
Wild-type Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were evaluated by noninvasive in situ methods for their capacity for net CO2 assimilation, true rates of photosynthetic O2 evolution (determined from chlorophyll fluorescence measurements of photosystem II), partitioning of photosynthate into sucrose and starch, and plant growth. Compared with wild-type plants, the starch mutants showed reduced photosynthetic capacity, with the largest reduction occurring in mutant TL25 subjected to high light and increased CO2 partial pressure. The extent of stimulation of CO2 assimilation by increasing CO2 or by reducing O2 partial pressure was significantly less for the starch mutants than for wild-type plants. Under high light and moderate to high levels of CO2, the rates of CO2 assimilation and O2 evolution and the percentage inhibition of photosynthesis by low O2 were higher for the wild type than for the mutants. The relative rates of 14CO2 incorporation into starch under high light and high CO2 followed the patterns of photosynthetic capacity, with TL46 showing 31% to 40% of the starch-labeling rates of the wild type and TL25 showing less than 14% incorporation. Overall, there were significant correlations between the rates of starch synthesis and CO2 assimilation and between the rates of starch synthesis and cumulative leaf area. These results indicate that leaf starch plays an important role as a transient reserve, the synthesis of which can ameliorate any potential reduction in photosynthesis caused by feedback regulation.  相似文献   

14.
Prolonged inorganic nitrogen (NO3 +NH4 +) limitation of non-N2-fixing soybean plants affected leaflet photosynthesis rates, photosynthate accumulation rates and levels, and anaplerotic carbon metabolite levels. Leaflets of nitrogen-limited (N-Lim), 27–31-day-old plants displayed 15 to 23% lower photosynthesis rates than leaflets of nitrogen-sufficient (N-Suff) plants. In contrast, N-Lim plant leaflets displayed higher sucrose and starch levels and rates of accumulation, as well as higher levels of carbon metabolites associated with sucrose and starch synthesis, e. g., glycerate-3-phosphate and glucose phosphates, than N-Suff plant leaflets. Concurrently, levels of soluble protein, chlorophyll, and anaplerotic metabolites, e.g., malate and phosphoenolpyruvate, were lower in leaflets of N-Lim plants than N-Suff plants, suggesting that the enzymes of the anaplerotic carbon metabolite pathway were lower in activity in N-Lim plant leaflets. Malate net accumulation rates in the earliest part of the illumination period were lower in N-Lim than in N-Suff plant leaflets; however, by the midday period, malate accumulation rate in N-Lim plant leaflets exceeded that in leaflets of N-Suff plants. Further, soluble protein accumulation rates in leaflets of N-Suff and N-Lim plants were similar, and the rate of dark respiration, measured in the early part of the dark period, was higher in N-Lim plant leaflets than in N-Suff plant leaflets. It was concluded that during prolonged N-limitation, foliar metabolite conditions favored the channelling of a large proportion of the carbon assimilate into sucrose and starch, while assimilate flow through the anaplerotic pathway was diminished. However, in some daytime periods, there was a normal level of carbon assimilate channelled through the anaplerotic pathway for ultimate use in amino acid and protein synthesis.Abbreviations ADPG-PPiase ADPglucose pyrophosphorylase - Ce CO2 in the leaf photosynthesis measuring cuvette - Ci leaf internal CO2 during photosynthesis measurement - Chl chlorophyll - DHAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - Gsw stomatal conductance with units as mmol H2O m–2 s–1 - G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - FBPase-pH 8.1 chloroplastic fructose-1,6-bisP (C-1) phosphatase (pH 8.1) - MAL malate - N inorganic nitrogen, i.e. NO3 +NH4 + (at levels and molar ratios indicated) - PE post-emergence - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PGA 3-phosphoglycerate - PYR pyruvate - PYR kinase pyruvate kinase - Pn net CO2 photoassimilation in leaves - PPFD photosynthetic photon flux density - PPRC pentose phosphate reductive cycle - RuBP ribulose-1,5-bisphosphate; rubisco-ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf mass - SPS sucrose-6-phosphate synthase - TCA cycle tricarboxylic acid cycle; triose-P-DAP+GAP  相似文献   

15.
Detached leaves of 14 day-old dark-grown pea seedlings were immersed with their cut ends either in water (control) or in 20 mM Pb(NO3)2 solution. They were exposed to continuous illumination during 24 and 48 h. The formation of PSII primary photochemistry in thylakoids was determined in vivo by measuring changes in values of parameters of chlorophyll a fast fluorescence kinetics: Fo, Fm, Fv, Fv/Fm and t 1/2. The amount of lead accumulation in leaves, content of chlorophylls and carotenoids and rates of CO2 uptake in light and evolution in darkness (Pn-net photosynthesis and DR - dark respiration respectively) were determined. It has been found that with the exception of Fo, values of Fv, Fm and Fv/Fm were reduced by Pb2+. The values of t 1/2 were significantly larger in Pb2+ treated leaves. Decrease in the chlorophyll a fluorescence parameters was paralleled with the strong inhibition by this metal the biosynthesis of chlorophyll a and b but less of the carotenoids. Pb2+ drastically reduced Pn but had a stimulatory action on DR after 24 h and small inhibition of DR after 48 h exposure of leaves to this metal. As a consequence, after 48 h of greening the ratio of DR/Pn of control leaves was 0.45 whereas in Pb2+ treated leaves 2.7. It is proposed that DR in leaves plays a protective role against damage of Pn by Pb2+. Protection can be due to the supply the respiratory derived reductant and ATP to carry out cell metabolism upon reduced photosynthesis.  相似文献   

16.
The gas exchange properties of whole plant canopies are an integral part of crop productivity and have attracted much attention in recent years. However, insufficient information exists on the coordination of transpiration and CO2 uptake for individual leaves during the growing season. Single-leaf determinations of net photosynthesis (Pn), transpiration (E) and water use efficiency (WUE) for field-grown cotton (Gossypium hirsutum L.) leaves were recorded during a 2-year field study. Measurements were made at 3 to 4 day intervals on the main-stem and first three sympodial leaves at main-stem node 10 from their unfolding through senescence. Results indicated that all gas exchange parameters changed with individual main-stem and sympodial leaf age. Values of Pn, E and WUE followed a rise and fall pattern with maximum rates achieved at a leaf age of 18 to 20 days. While no significant position effects were observed for Pn, main-stem and sympodial leaves did differ in E and WUE particularly as leaves aged beyond 40 days. For a given leaf age, the main-stem leaf had a significantly lower WUE than the three sympodial leaves. WUE's for the main-stem and three sympodial leaves between the ages of 41 to 50 days were 0.85, 1.30, 1.36 and 1.95 μmol CO2 mmol−1 H2O, respectively. The mechanisms which mediated leaf positional differences for WUE were not strictly related to changes in stomatal conductance (gs·H2O) since decreases in gs·H2O with leaf age were similar for the four leaves. However, significantly different radiant environments with distance along the fruiting branch did indicate the possible involvement of mutual leaf shading in determining WUE. The significance of these findings are presented in relation to light competition within the plant canopy during development.  相似文献   

17.
Crassulacean acid metabolism photosynthesis: `working the night shift'   总被引:4,自引:0,他引:4  
Crassulacean acid metabolism (CAM) can be traced from Roman times through persons who noted a morning acid taste of some common house plants. From India in 1815, Benjamin-Heyne described a `daily acid taste cycle' with some succulent garden plants. Recent work has shown that the nocturnally formed acid is decarboxylated during the day to become the CO2 for photosynthesis. Thus, CAM photosynthesis extends over a 24-hour day using several daily interlocking cycles. To understand CAM photosynthesis, several landmark discoveries were made at the following times: daily reciprocal acid and carbohydrate cycles were found during 1870 to 1887; their precise identification, as malic acid and starch, and accurate quantification occurred from 1940 to 1954; diffusive gas resistance methods were introduced in the early 1960s that led to understanding the powerful stomatal control of daily gas exchanges; C4 photosynthesis in two different types of cells was discovered from 1965 to ∼1974 and the resultant information was used to elucidate the day and night portions of CAM photosynthesis in one cell; and exceptionally high internal green tissue CO2 levels, 0.2 to 2.5%, upon the daytime decarboxylation of malic acid, were discovered in 1979. These discoveries then were combined with related information from C3 and C4 photosynthesis, carbon biochemistry, cellular anatomy, and ecological physiology. Therefore by ∼1980, CAM photosynthesis finally was rigorously outlined. In a nutshell, 24-hour CAM occurs by phosphoenol pyruvate (PEP) carboxylase fixing CO2(HCO3 ) over the night to form malic acid that is stored in plant cell vacuoles. While stomata are tightly closed the following day, malic acid is decarboxylated releasing CO2 for C3 photosynthesis via ribulose bisphosphate carboxylase oxygenase (Rubisco). The CO2 acceptor, PEP, is formed via glycolysis at night from starch or other stored carbohydrates and after decarboxylation the three carbons are restored each day. In mid to late afternoon the stomata can open and mostly C3 photosynthesis occurs until darkness. CAM photo-synthesis can be both inducible and constitutive and is known in 33 families with an estimated 15 to 20 000 species. CAM plants express the most plastic and tenacious photosynthesis known in that they can switch photosynthesis pathways and they can live and conduct photosynthesis for years even in the virtual absence of external H2O and CO2, i.e., CAM tenaciously protects its photosynthesis from both H2O and CO2 stresses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Productivity of aridland plants is predicted to increase substantially with rising atmospheric carbon dioxide (CO2) concentrations due to enhancement in plant water-use efficiency (WUE). However, to date, there are few detailed analyses of how intact desert vegetation responds to elevated CO2. From 1998 to 2001, we examined aboveground production, photosynthesis, and water relations within three species exposed to ambient (around 38 Pa) or elevated (55 Pa) CO2 concentrations at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility in southern Nevada, USA. The functional types sampled—evergreen (Larrea tridentata), drought-deciduous (Ambrosia dumosa), and winter-deciduous shrubs (Krameria erecta)—represent potentially different responses to elevated CO2 in this ecosystem. We found elevated CO2 significantly increased aboveground production in all three species during an anomalously wet year (1998), with relative production ratios (elevated:ambient CO2) ranging from 1.59 (Krameria) to 2.31 (Larrea). In three below-average rainfall years (1999–2001), growth was much reduced in all species, with only Ambrosia in 2001 having significantly higher production under elevated CO2. Integrated photosynthesis (mol CO2 m−2 y−1) in the three species was 1.26–2.03-fold higher under elevated CO2 in the wet year (1998) and 1.32–1.43-fold higher after the third year of reduced rainfall (2001). Instantaneous WUE was also higher in shrubs grown under elevated CO2. The timing of peak canopy development did not change under elevated CO2; for example, there was no observed extension of leaf longevity into the dry season in the deciduous species. Similarly, seasonal patterns in CO2 assimilation did not change, except for Larrea. Therefore, phenological and physiological patterns that characterize Mojave Desert perennials—early-season lags in canopy development behind peak photosynthetic capacity, coupled with reductions in late-season photosynthetic capacity prior to reductions in leaf area—were not significantly affected by elevated CO2. Together, these findings suggest that elevated CO2 can enhance the productivity of Mojave Desert shrubs, but this effect is most pronounced during years with abundant rainfall when soil resources are most available.  相似文献   

19.
Plant growth regulators applied in vitro affected strawberry plant performance ex vitro for a period of up to 4 months. Benzyl-adenine and gibberellin enhanced juvenile characteristics; in general, more runners and monofoliolate leaves were produced, net photosynthesis was reduced, leaf diffusive resistance was increased and, on occasion, flowering was delayed. In contrast, abscisic acid and a gibberellin biosynthesis inhibitor, paclobutrazol, resulted in a more adult phenotype; specifically, flowering was earlier, net photosynthesis and leaf diffusive resistance rates were equal to those of adult plants, and fewer leaves were monofoliolate. Tissue culture-produced plants reacquire the adult phenotype earlier than seedlings mature. Abscisic acid application to seedlings also resulted in earlier and increased flowering.Endogenous abscisic acid concentrations were greater in adult plants and less in tissue culture and seedling plants at 3 and 7 weeks ex vitro, after germination or after adult runner propagation. No flowering occurred at 3 weeks in any propagation type and only runner-produced plants flowered at 7 weeks. At 15 weeks, no statistical difference in abscisic acid concentrations existed among propagation treatments and all propagation types flowered. The endogenous concentrations of abscisic acid in plants propagated by all three methods were much higher at three weeks compared to concentrations at 7 or 15 weeks.Abbreviations ABA +cis, trans-abscisic acid - BA benzyl-adenine - GC-SIM-MS combined gas chromatography-selected ion monitoring mass spectrometry - GA gibberellin A3 - RS leaf diffusive resistance in sec cm-1 - MS Murashige & Skoog medium devoid of plant growth regulators - Pn net photosynthesis in mol CO2 fixed m-2 sec-1 - paclo paclobutrazol as 50WP - TC-plants plants produced from tissue culture - Tween20 polyoxyethylene-sorbitan monolaurate - RP runner plants - SDLG selfed seedlings  相似文献   

20.
Transpiration-induced changes in the photosynthetic capacity of leaves   总被引:18,自引:0,他引:18  
Thomas D. Sharkey 《Planta》1984,160(2):143-150
High transpiration rates were found to affect the photosynthetic capacity of Xanthium strumarium L. leaves in a manner analagous to that of low soil water potential. The effect was also looked for and found in Gossypium hirsutum L., Agathis robusta (C. Moore ex Muell.) Bailey, Eucalyptus microcarpa Maiden, Larrea divaricata Cav., the wilty flacca tomato mutant (Lycopersicon esculentum (L.) Mill.) and Scrophularia desertorum (Munz) Shaw. Two methods were used to distinguish between effects on stomatal conductance, which can lower assimilation by reducing CO2 availability, and effects on the photosynthetic capacity of the mesophyll. First, the response of assimilation to intercellular CO2 pressure (C i) was compared under conditions of high and low transpiration. Second, in addition to estimating C i using the usual Ohm's law analogy, C i was measured directly using the closed-loop technique of T.D. Sharkey, K. Imai, G.D. Farquhar and I.R. Cowan (1982, Plant Physiol, 60, 657–659). Transpiration stress responses of Xanthium strumarium were compared with soil drought effects. Both stresses reduced photosynthesis at high C i but not at low C i; transpiration stress increased the quantum requirement of photosynthesis. Transpiration stress could be induced in small sections of leaves. Total transpiration from the plant did not influence the photosynthetic capacity of a leaf kept under constant conditions, indicating that water deficits develop over small areas within the leaf. The effect of high transpiration on photosynthesis was reversed approximately half-way by returning the plants to low-transpiration conditions. This reversal occurred as fast as measurements could be made (5 min), but little further recovery was observed in subsequent hours.Abbreviations and symbols A photosynthetic CO2 assimilation rate - C a ambient CO2 partial pressure - C i partial pressure of CO2 inside the leaf - VPD leaf-to-air water-vapor pressure difference This research was begun while the author was a Postdoctoral Research Fellow at the Australian National University, Canberra  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号