首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In fish retinas, cone photoreceptor cells are arranged in two-dimensional regular patterns, called cone mosaics. In the zebrafish retina, four subtypes of cone cells, which are maximally sensitive to different wavelengths of light, appear in quasi-periodic patterns. The pattern formation mechanism is unknown. Here, I develop a mathematical model to examine whether cell adhesion can explain the formation of the zebrafish mosaic. I assume that the movement of differentiated cells is responsible for generating the pattern, and that the movement rate is modified by cell adhesion. The pattern is formed if the magnitudes of cell adhesion between cell types are chosen appropriately. I determine the conditions of cell adhesion for generating the pattern. I also compare this cell rearrangement model with a previously studied model in which the pattern is formed by transitions of cell fate. The condition for obtaining the focal pattern is looser in the cell rearrangement model than in the fate transition model.  相似文献   

2.
In the zebrafish retina, four types of cone photoreceptor cells (or cones) with different sensitive frequencies are arranged in a regular pattern, named "cone mosaic". A pair of small cones, one sensitive to red and the other sensitive to green, is in close contact and forms a "double cone". In addition, there are two kinds of single cones, sensitive to blue and to UV, respectively. We study characteristics of cell-differentiation rules that realize stable formation of cone mosaic. Assumptions are: undifferentiated cells are arranged in a regular square lattice, and they are one of the three types (B, U, and D cells). A D cell has two parts (G and R-parts) and takes one of the four directions. The cells change their cell type and orientation following a continuous-time Markovian chain. The state transtion occurs faster if it increases the stabilities of the focal cell, in which the stability is the sum of affinities with neighboring cells. After the transient period, the system may reach a stable pattern (pre-pattern). The pattern becomes fixed later when the cells are fully differentiated in which B cells, U cells, and D cells become blue-sensitive, UV-sensitive, and double cones, respectively. We search for the combinations of affinities between cell states that can generate the same cone mosaic patterns as in zerbrafish retina. Successful transition rules give (1) zero or small affinity with the pairs of cell states that are absent in the zebrafish cone mosaic (lambda(UR), lambda(BG)and the contact of two cells of the same type); (2) a large affinity between a part of D cells and a non-D cell (lambda(UG)and lambda(BR)); and (3) a positive affinity of an intermediate magnitude between two non-D cells (lambda(BU)) and between two parts of D cells (lambda(GR)). The latter should be of a magnitude of about 60-90% of the former. The time needed to form a regular pattern increases with the lattice size if all the cells start pre-pattern formation simultaneously. However, the convergence time is shortened considerably if the pre-pattern formation occurs only in a narrow band of morphogenetic cell layer that sweeps from one end of the lattice to the other.  相似文献   

3.
In this paper, we describe the embryonic origin and patterning of the planar mosaic array of cone photoreceptor spectral subtypes in the zebrafish retina. A discussion of possible molecular mechanisms that might generate the cone mosaic array considers but discards a model that accounts for formation of neuronal mosaics in the inner retina and discusses limitations of mathematical simulations that reproduce the zebrafish cone mosaic pattern. The formation and organization of photoreceptors in the ommatidia of the compound eye of Drosophila is compared with similar features in the developing zebrafish cone mosaic, and a model is proposed that invokes spatiotemporally coordinated cell-cell interactions among cone progenitors to determine the identity and positioning of cone spectral subtypes.  相似文献   

4.
The outer retinae of adults of 13 atherinomorph species, representing nine different families, were examined by both light and electron microscopy. The retinae were investigated with respect to photoreceptor types, cone densities, and cone patterns. All data were composed to eye maps. This procedure allows an interspecific comparison of the regional differences within the outer retina among these shallow-water fish. Furthermore, for a more detailed pattern analysis nitro-blue tetrazolium chloride- (NBT)-stainings in the retina of Melanotaenia maccullochi are presented. Apart from rods, eight morphologically different cone types could be identified: short, intermediate, and long single cones, double cones (equal and unequal), triple cones (triangular and linear), and in Ameca splendens one quadruple cone. Dimensions and occurrence of photoreceptors vary among the respective species and within the retinal regions. In the light-adapted state, the cones are arranged in highly ordered mosaics. Five different cone tessellation types were found: row patterns, twisted row patterns, square patterns, pentagonal patterns, and, exclusively in Belone belone, a hexagonal pattern. In Melanotaenia maccullochi the different spectral photoreceptor classes correspond well with the distribution of morphological photoreceptor classes within the mosaic. Double cone density maxima together with a highly ordered cone arrangement usually occur in the nasal and/or ventral to ventrotemporal retina. In most of the species that were examined these high-density regions are presumed to process visual stimuli from the assumed main directions of vision, which mainly depend on feeding behavior and predator pressure. Our findings are discussed with respect to the variable behavioral and visual ecology and phylogeny of the respective species.  相似文献   

5.
6.
Regional variations of cone density, cone types and cone mosaic were investigated by light microscopy in yolk sac fry, parr and adults of salmon (Salmo salar) and trout (Salmo trutta trutta) and related to the feeding habits of different stages. The retinal organization of the two species is similar, as are their feeding habits. In parr and adults of both species a region with high cone density was found in the ventro-temporal part of the retina. The lowest values of cone density were found centrally in the dorsal half of the retina. An increase in cone density towards the ora serrata was noted in all retinae investigated. There is a good agreement between the density distribution of the cones in parr of salmon and trout and their feeding habits. The parr feed to a great extent on the invertebrate drift. Facing the current, the parr search the water region in front and above themselves for food organisms, thereby probably making use of the ventro-temporal area of high cone density. The connection between the cone density distribution and the feeding habits is less clear in adult salmon and trout, but the high cone density region is probably used when they feed on surface organisms and schooling prey. The ecological significance of cone types and cone mosaics is discussed. During growth there was a change of the cone mosaic from a regular square pattern in the fry towards a less regular square or row pattern in the adults. The position of regions with high and low cone density did not change during development in each species and had a similar distribution in the two species. On the other hand, the range of cone density values becomes relatively greater as the animal grows older. The cone density distribution seems to be more homogeneous in parr than in adults. Differences in the relative density distribution of the cones are influenced by recruitment at the retinal periphery and by spreading out of existing cells. In addition to the ora serrata, mitoses were also observed in more central parts of the retina having well-differentiated receptors and a cone mosaic. Mitoses were noted in all three nuclear layers but were most frequent in the outer nuclear layer, in which the resulting cells probably differentiate into rods. Undifferentiated zones similar to the peripheral growth zone of the retina were found on both sides of the falciform process in fry. In parr and adults an undifferentiated zone persisted only on the temporal side. It probably contributes to the high cone density in the ventro-temporal part of the retina by a delivery of new cells.  相似文献   

7.
Although the unique organization of vertebrate cone mosaics was first described long ago,both their underlying molecular basis and physiological significance are largely unknown.Here,we demonstrate that Crumbs proteins,the key regulators of epithelial apical polarity,establish the planar cellular polarity of photoreceptors in zebrafish.Via heterophilic Crb2a-Crb2b interactions,the apicobasal polarity protein Crb2b restricts the asymmetric planar distribution of Crb2a in photoreceptors.The planar polarized Crumbs proteins thus balance intercellular adhesions and tension between photoreceptors,thereby stabilizing the geometric organization of cone mosaics.Notably,loss of Crb2b in zebrafish induces a nearsightedness-like phenotype in zebrafish accompanied by an elongated eye axis and impairs zebrafish visual perception for predation.These data reveal a detailed mechanism for cone mosaic homeostasis via previously undiscovered apical-planar polarity coordination and propose a pathogenic mechanism for nearsightedness.  相似文献   

8.
In the present EM study, we investigate the retina of Belone belone , a visually-orientated marine predator living close to the water surface. In the duplex retina, four morphologically different cone types are observed: unequal and equal double cones, long single cones and triple cones. In the light-adapted state, five different cone patterns occur: row, twisted row, square, pentagonal and hexagonal patterns. High double cone densities are found ventro-nasally, ventro-temporally and dorso-temporally. Throughout the retina the double cone/single cone ratio is 2 : 1, in the ventral part, however, a 1 : 1 ratio occurs. In the vitreous body we found a curtain-like intraocular septum dividing the retina into two morphologically different regions. In most areas of the dark-adapted retina the cone patterns are absent at the ellipsoid level, with long single cones standing more vitreally in the light path than double cones. The mosaics are retained, however, in the outer nuclear layer. Typical dark adaptation, i.e. the retinomotor movements of the retinal pigment epithelium and photoreceptors in response to the dark adaptation (light change) is not present in the peripheral ventral and parts of the central ventral area. In both regions we found a twisted row pattern of cones having a vitreal position. The findings are discussed with respect to the photic habitat and feeding habits of this species.  相似文献   

9.
The outer retina of the smelt Osmerus eperlanus, a visually orientated plankton feeder, of Lake Hiidenvesi (Finland), was examined using both light and transmission electron microscopy. Apart from rods, six morphologically different cone photoreceptor types were identified: short single cones, long single cones, unequal/equal double cones and triple cones (triangular and linear variety). Additionally, in the dorsal region, multiple cone arrangements consisting of up to five members occur. Long single cones and triple cones were observed only sporadically throughout the retina. The incidence of short single cones as a regular element of the cone mosaic is restricted to the ventrotemporal area. The dominant pattern in the Osmerus retina is a pure or a twisted row pattern occurring in all regions. Ventrotemporally, however, square patterns were found as well. The highest cone densities occur in the peripheral ventrotemporal retina. These results indicate that the ventrotemporal region plays an important role in the vision of the smelt. The findings are discussed with respect to the photic habitat conditions and behavioural ecology of the smelt in Lake Hiidenvesi.  相似文献   

10.

Purpose

To assess macular photoreceptor abnormalities in eyes with retinitis pigmentosa (RP) with preserved central vision using adaptive optics scanning laser ophthalmoscopy (AO-SLO).

Methods

Fourteen eyes of 14 patients with RP (best-corrected visual acuity 20/20 or better) and 12 eyes of 12 volunteers underwent a full ophthalmologic examination, fundus autofluorescence, spectral-domain optical coherence tomography (SD-OCT), and imaging with a prototype AO-SLO system. Cone density and spatial organization of the cone mosaic were assessed using AO-SLO images.

Results

In 3 eyes with RP and preserved central vision, cones formed a mostly regular mosaic pattern with small patchy dark areas, and in 10 eyes, the cone mosaic patterns were less regular, and large dark regions with missing cones were apparent. Only one eye with RP demonstrated a normal, regular cone mosaic pattern. In eyes with RP, cone density was significantly lower at 0.5 mm and 1.0 mm from the center of the fovea compared to normal eyes (P<0.001 and 0.021, respectively). At 0.5 mm and 1.0 mm from the center of the fovea, a decreased number of cones had 6 neighbors in eyes with RP (P = 0.002 for both). Greater decrease in cone density was related to disruption of the photoreceptor inner segment (IS) ellipsoid band on SD-OCT images (P = 0.044); however, dark regions were seen on AO-SLO even in areas of continuous IS ellipsoid on SD-OCT. Decreased cone density correlated thinner outer nuclear layer (P = 0.029) and thinner inner segment and outer segment thickness (P = 0.011) on SD-OCT.

Conclusions

Cone density is decreased and the regularity of the cone mosaic spatial arrangement is disrupted in eyes with RP, even when visual acuity and foveal sensitivity are good. AO-SLO imaging is a sensitive quantitative tool for detecting photoreceptor abnormalities in eyes with RP.  相似文献   

11.

Background

A significant body of literature is devoted to modeling developmental mechanisms that create patterns within groups of initially equivalent embryonic cells. Although it is clear that these mechanisms do not function in isolation, the timing of and interactions between these mechanisms during embryogenesis is not well known. In this work, a computational approach was taken to understand how lateral inhibition, differential adhesion and programmed cell death can interact to create a mosaic pattern of biologically realistic primary and secondary cells, such as that formed by sensory (primary) and supporting (secondary) cells of the developing chick inner ear epithelium.

Results

Four different models that interlaced cellular patterning mechanisms in a variety of ways were examined and their output compared to the mosaic of sensory and supporting cells that develops in the chick inner ear sensory epithelium. The results show that: 1) no single patterning mechanism can create a 2-dimensional mosaic pattern of the regularity seen in the chick inner ear; 2) cell death was essential to generate the most regular mosaics, even through extensive cell death has not been reported for the developing basilar papilla; 3) a model that includes an iterative loop of lateral inhibition, programmed cell death and cell rearrangements driven by differential adhesion created mosaics of primary and secondary cells that are more regular than the basilar papilla; 4) this same model was much more robust to changes in homo- and heterotypic cell-cell adhesive differences than models that considered either fewer patterning mechanisms or single rather than iterative use of each mechanism.

Conclusion

Patterning the embryo requires collaboration between multiple mechanisms that operate iteratively. Interlacing these mechanisms into feedback loops not only refines the output patterns, but also increases the robustness of patterning to varying initial cell states.  相似文献   

12.
The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called “Y-Junctions”, form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.  相似文献   

13.
The frequently occurring photoreceptor patterns in fish are explained using functional and environmental demands in a geometric model. The shape of the double cone provides a number of constructional properties leading to a limited number of appropriate configurations. The probability of their occurrence is estimated from the degree to which the combination of properties of each configuration meets specific environmental light conditions. A row pattern of merely double cones is especially suitable for vision in a dim homochromatic environment; a triangular pattern is quite appropriate for high resolution and accurate movement detection, whereas the known square pattern has a high adaptive capacity to varying spectral distributions. In this context the transforming capacities of both square and row patterns can be understood.Frequently used abbreviations Ad area of double elements per pattern unit - ARC area ratio of cone types - As area of single elements per pattern unit - DHR degree of homogeneous resolution - dZ range of variation of Z - HDC homogeneous distribution of cone types - NRC number ratio of cone types - O area of pattern unit - Q ratio between dZ and VAR - R radius of single element - r radius of one intersecting circle of double element - Sd area of one double element - Ss area of one single element - SYM order of symmetry - VAR variation of the ARC - Z packing  相似文献   

14.
SUMMARY Serially homologous structures are believed to originate from the redeployment of a genetic cascade in different locations of the body. Serial homologs may diverge at the genetic and morphological level and acquire developmental independency (individualization). Teeth are repeated units that form dentitions found on different bones of the oral–pharyngeal cavity in gnathostomes and provide a good model to study such processes. Previous comparisons of dlx gene expression patterns between mouse oral teeth and zebrafish pharyngeal teeth showed a high level of divergence. Furthermore, these genes are differentially expressed in different teeth of the zebrafish, and in the mouse they are responsible for tooth identity (incisors vs. molars). We examined the potential divergence of dlx gene expression between oral and pharyngeal teeth by examining the expression pattern in the development of the first generation teeth of the medaka and comparing it with data from the zebrafish and the mouse. Out of the seven medaka dlx genes, five are expressed during odontogenesis compared with six in both the zebrafish and the mouse. The only difference observed between oral and pharyngeal teeth in the medaka is an earlier expression of dlx5a in the oral dental epithelium. The subset of dlx genes expressed in the medaka, zebrafish, and mouse is slightly different but their detailed expression patterns are highly divergent. Our results demonstrate a low constraint on dlx gene expression shuffling in the odontogenic cascade within osteichtyans but the non-individualization of oral and pharyngeal dentitions in the medaka.  相似文献   

15.
In the two studied subspecies of Coregonus lavaretus , the pollan ( C. l. wartmanni ) (which lives deep in the pelagial) and the gangfish ( C. l. macrophthalmus ) (which lives near the slope, closer to the bottom), duplex retinae containing rod and cone photoreceptors are found. Four morphologically different cone types were observed: unequal double cones, short single cones, long single cones and triple cones. The cones are arranged in a square pattern (four double cones around a central short single cone) in the ventral and ventrotemporal and in a row pattern in the nasal and dorsal areas of the retina. Moreover, intermediate patterns can be observed in several regions indicating that double cone twisting occurs, i.e. double cones twist about their longitudinal axis. The highest cone densities are found in the ventrotemporal area. Conversely, the rod photoreceptor density is the highest in the dorsal retina. While the basic morphology of the retina is the same in both subspecies, the distribution of long single and triple cones differs between the studied animals. While these cone types are very rare in the pollan, they are common in the gangfish, though not exhibiting a regular pattern. The findings are discussed with regard to the photic habitat conditions, the systematic position of coregonids and variation of retinal morphology in the two subspecies.  相似文献   

16.
The regular arrangement of retinal cone cells in a mosaic pattern is a common feature of teleosts. In the zebrafish, Brachydanio rerio, the retinal cone mosaic comprises parallel rows consisting of a repeating motif of four cone types. In order to elucidate the temporal and spatial aspects of the genesis of the cone mosaic in the developing retina, we generated a monoclonal antibody that specifically binds to the double cone photoreceptor of the adult. We first saw staining in the developing retina with this antibody, FRet 43, at 48 hours postfertilization, the time at which the first photoreceptor cells undergo their final mitotic division. We then injected embryonic fish with the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), confirming with a double-labeling experiment that the onset of FRet 43 antigenicity occurs within three hours of the cellular division that generates the double cone photoreceptors. Then we stained tangential sections of the 54-hour embryonic retina with FRet 43, further showing that cells devoid of staining alternate with stained pairs of cells in a pattern that is consistent with the arrangement of photoreceptors in the adult cone mosaic. These results indicate that a marker of the double cone phenotype is expressed at approximately the same time as cellular birthday and that the mosaic patterning is present within 6 hours of this expression.  相似文献   

17.
18.
19.
20.
根据生物大分子核磁共振数据库(BMRB)内16条单链DNA序列中的碱基特征质子的化学位移信息,分析结果表明,五联体(pentaplet)是到目前为止可以由实验数据证明的、决定中部碱基质子化学位移水平的基本单位,即DNA碱基质子的NMR化学位移受所在五联体序列的控制。以五联体中部是T碱基为例,来自化学位移的证据符合来自量子力学计算所得“5'嘧啶-嘌呤比5'嘌呤-嘧啶的顺序更稳定”的论断,表现为5'嘧啶-嘌呤侧翼顺序导致的中部T碱基质子化学位移,比5'嘌呤-嘧啶顺序δ值小0.089。对于中部碱基质子化学位移,5'侧翼二联体效应与3'侧翼二联体效应明显不同。5'侧翼序列对五联体中部碱基质子化学位移的影响从大到小,与5'序列的色散力排列顺序更相关。氢谱上A H8、A H2、G H8、T H6、C H6的位移分布顺序,与从头计算(ab initio)和δ HMON二种伴氢碳原子净电荷计算结果最为接近,相关性好。与ab initio法得到的氢原子净电荷相关性不好。二翼碱基可以对五联体中心碱基的非交换质子在8.5!的距离上产生影响,这是对NMR偶极作用距离极限的突破。DNA的质子次级化学位移不是像蛋白质那样由氢键起主导作用。以上分析为建立双链DNA碱基质子化学位移理论预测公式提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号