首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The roles of potassium and calcium in the slow hyperpolarizations of membranes of activated macrophages are investigated using standard intracellular electrical recording techniques. The amplitude of spontaneous slow hyperpolarizations decreases as a logarithmic function of the external potassium concentration in the culture medium. Similar dependence on the potassium gradient is observed when different levels of membrane potentials are imposed by constant current injection. The reversal potential for electrically evoked slow hyperpolarizations is -90 mV. A 10-fold increase in external potassium concentration causes a 60 mV shift of the reversal potential towards zero. Divalent cation ionophores (A23187 and X537A) can induce slow hyperpolarization responses in quiescent cells or permanent hyperpolarization in spontaneously active cells. The amplitude of the ionophore-induced hyperpolarizations is reduced by an increase in external potassium concentration in a manner consistent with data on slow hyperpolarization responses in the absence of ionophore. The calcium antagonist, verapamil, depresses the slow hyperpolarization responses at the concentration of 10(-5) M. It is suggested that the development of the hyperpolarizing response is due to a calcium-dependent potassium channel. The data support the assumption that spontaneous and artificially elicited slow hyperpolarization responses share a common calcium-dependent mechanism.  相似文献   

2.
The roles of potassium and calcium in the slow hyperpolarizations of membranes of activated macrophages are investigated using standard intracellular electrical recording techniques.The amplitude of spontaneous slow hyperpolarizations decreases as a logarithmic function of the external potassium concentration in the culture medium. Similar dependence on the potassium gradient is observed when different levels of membrane potentials are imposed by constant current injection. The reversal potential for electrically evoked slow hyperpolarizations is ?90 mV. A 10-fold increase in external potassium concentration causes a 60 mV shift of the reversal potential towards zero.Divalent cation ionophores (A23187 and X537A) can induce slow hyperpolarization responses in quiescent cells or permanent hyperpolarization in spontaneously active cells. The amplitude of the ionophore-induced hyperpolarizations is reduced by an increase in external potassium concentration in a manner consistent with data on slow hyperpolarization responses in the absence of ionophore.The calcium antagonist, verapamil, depresses the slow hyperpolarization responses at the concentration of 10?5 M.It is suggested that the development of the hyperpolarizing response is due to a calcium-dependent potassium channel. The data support the assumption that spontaneous and artificially elicited slow hyperpolarization responses share a common calcium-dependent mechanism.  相似文献   

3.
Erythrocyte membrane potential was recorded via measurement of pH of the incubation medium in presence ofprothonophore. The increase of intracellular calcium concentration in presence of calcium ionophore A23187 and addition of the artificial redox-system ascorbate-phenazine methosulfate led to membrane hyperpolarization due to opening of Ca(2+)-activated potassium channels that are regulated by multiple signaling pathways. The opening of the Ca(2+)-activated potassium channels in presence of artificial redox-system ascorbate-phenazine methosulfate is mediated at least by two mechanisms including an increase in affinity of channels to calcium ions and involvement of the protein SH-groups and the components of the respiratory circuit which have beer found in erythrocyte membrane.  相似文献   

4.
Summary Phosphate efflux was measured as the fractional rate of loss of radioactivity from desheathed rabbit vagus nerves after loading with radiophosphate. The effects of strategies designed to increase intracellular calcium were investigated. At the same time, the exchangeable calcium content was measured using45Ca. Application of calcium ionophore A23187 increased phosphate efflux in the presence of external calcium in parallel with an increase in calcium content. In the absence of external calcium, there was only a late, small increase in phosphate efflux. For nerves already treated with the calcium ionophore, the phosphate efflux was sensitive to small changes in external calcium, in the range 0.2 to 2mm calcium, whereas similar increases in calcium in absence of ionophore gave much smaller increases in phosphate efflux. Removal of external sodium (choline substitution) produced an initial increase in phosphate efflux followed by a fall. The initial increase in phosphate efflux was much larger in the presence of calcium, than in its absence. The difference was again paralleled by an increase in calcium content of the preparation, thought to be due to inhibition of Na/Ca exchange by removal of external sodium. Measurements of ATP content and ATP, ADP, phosphate and creatine phosphate ratios did not indicate significant metabolic changes when the calcium content was increased. Stimulation of phosphate efflux by an increase in intracellular calcium may be due to stimulation of phospholipid metabolism. Alternatively, it is suggested that stimulation of phosphate efflux is associated with the stimulation of calcium efflux, possibly by cotransport of calcium and phosphate.  相似文献   

5.
Previous studies have shown that ATP enhances intracellular calcium concentration and activates potassium channels in Madin Darby canine kidney (MDCK)-cells, thus leading to hyperpolarization of the cell membrane. The present study has been performed to elucidate the intracellular mechanisms involved. To this end, the effects of ATP on the potential difference across the cell membrane (PD), on formation of inositol phosphates, and on intracellular calcium concentration (Cai) have been analyzed in cells without or with pretreatment with pertussis toxin or 12-O-tetradecanoyl phorbol 13-acetate diester (TPA). In untreated cells, ATP leads to a sustained hyperpolarization and an increase of inositol 1,4,5-trisphosphate (IP3), inositol 1,3,4,5-tetrakisphosphate (IP4), and Cai. In the absence of extracellular calcium, the effect of ATP on PD and Cai is only transient. In cells pretreated with pertussis toxin, the effect of ATP on inositol trisphosphate is almost abolished, but ATP still leads to an increase of PD and Cai, which is sustained in the presence, and transient in the absence, of extracellular calcium. In cells pretreated with TPA, the effect of ATP on inositol trisphosphate is reduced and the effect on Cai blunted; but ATP still leads to a hyperpolarization of the cell membrane, which is sustained in the presence, and transient in the absence, of extracellular calcium. The observations indicate that ATP activates phospholipase C by a phorbol ester and pertussis toxin sensitive mechanism. In addition, ATP enhances Cai by pertussis toxin insensitive mechanisms allowing recruitment of calcium from both, extracellular fluid and intracellular stores. Calcium then activates the potassium channels and thus leads to the hyperpolarization of the cell membrane.  相似文献   

6.
The addition of the calcium ionophore A23187 to rabbit neutrophils increases the amount of actin associated with the cytoskeleton regardless of the presence or absence of calcium in the incubation medium. In the presence of extracellular calcium, the effect of A23187 is biphasic with respect to concentration. The action of the ionophore is rapid, transient, and is inhibited by pertussis toxin, hyperosmolarity, and quinacrine. On the other hand, the addition of pertussis toxin or hyperosmolarity has small if any, effect on the rise in intracellular calcium produced by A23187. While quinacrine does not affect the fMet-Leu-Phe-induced increase in cytoskeletal actin and the polyphosphoinositide turnover, its addition inhibits completely the stimulated increase in Ca-influx produced by the same stimulus. The results presented here suggest that a rise in the intracellular concentration of free calcium is neither necessary nor sufficient for the stimulated increase in cytoskeletal-associated actin. A possible relationship between the lipid remodeling stimulated by chemoattractants and the increased cytoskeletal actin is discussed.  相似文献   

7.
Mesangial cells are smooth muscle-like cells of the renal glomerulus which contract and produce prostaglandins in response to vasopressin and angiotensin. These responses serve to regulate the glomerular capillary filtering surface area. We have used the membrane potential-sensitive fluorescent dye bis-oxonol and the intracellular fluorescent calcium-sensitive probe Indo-1 to study the changes in membrane potential (Em) and intracellular free calcium concentration ([Ca2+]i) in cultured rat mesangial cells in response to vasoconstrictor hormones. Basal [Ca2+]i was 227 +/- 4 nM, and stimulation by maximal concentrations of either vasopressin or angiotensin resulted in a transient 4-6-fold rise. Resting membrane potential was 45.8 +/- 0.9 mV and vasoconstrictor hormones caused a depolarization of 14-18 mV. The following extracellular ion substitutions indicated that chloride efflux was the predominant ion flux responsible for depolarization: 1) depolarization persisted when sodium in the medium was substituted with N-methylglucamine; 2) substitution of medium sodium chloride with sodium gluconate, which enhances the gradient for chloride efflux, augmented vasoconstrictor-stimulated depolarization; 3) suspension of cells in potassium chloride medium resulted in depolarization, following which, stimulation by either vasopressin or angiotensin resulted in hyperpolarization; and 4) this hyperpolarization did not occur when potassium gluconate medium was used to depolarize the cells. The calcium ionophore ionomycin also resulted in membrane depolarization. However, prevention of the rise in [Ca2+]i by prior exposure to ionomycin in calcium-free medium or by loading mesangial cells with the intracellular calcium buffer BAPTA did not abrogate the depolarization response to vasoconstrictor hormones. This indicates that a rise in intracellular calcium is not necessary for depolarization. In contrast, prior depolarization of the cells using varying concentrations of KCl in the external medium, which dissipated the electrochemical gradient for chloride efflux, resulted in a corresponding prolongation of the transient calcium response to vasopressin and angiotensin. These findings indicate that angiotensin and vasopressin depolarize mesangial cells by activating chloride channels and that this activation can occur by both calcium-dependent and -independent mechanisms. In addition, activation of chloride channels with resulting depolarization may serve to modulate the calcium signal.  相似文献   

8.
In Madin Darby canine kidney (MDCK) cells, epinephrine has been shown to increase intracellular calcium, activate calcium-dependent K+ channels and hyperpolarize the cell membrane. The present study has been performed to test for the possible involvement of alpha 2-adrenergic receptors. To this end, the effects of alpha 2-adrenoceptor agonist BHT 920 have been studied on cell membrane potential, ion channel activity and intracellular calcium: Similar to epinephrine, BHT 920 hyperpolarizes the cell membrane, increases intracellular calcium and activates inwardly rectifying K+ channels (single channel slope conductances 30-80 pS). Half-maximal hyperpolarization is achieved at concentrations between 10 and 100 nmol/l. The hyperpolarizing effect of BHT 920 is abolished in the presence of alpha 2-adrenoceptor antagonist yohimbine (100 nmol/l) but not in the presence of alpha 1-adrenoceptor antagonist prazosin (100 nmol/l). At extracellular calcium activity below 100 nmol/l BHT 920 still leads to a transient hyperpolarization of the cell membrane but, in contrast to epinephrine, is unable to significantly increase intracellular calcium or significantly activate the calcium-sensitive K+ channels. The observations indicate that stimulation of alpha 2-receptors participates in the epinephrine-induced increase of intracellular calcium, channel activation and hyperpolarization.  相似文献   

9.
Spatial gradients of sequestered and free cellular calcium (Ca2+) exist in the slug of Dictyostelium discoideum (Maeda and Maeda, 1973; Tirlapur et al., 1991; Azhar et al., 1995; Cubitt et al., 1995). When we vary intracellular Ca2+ with the help of calcium buffers and the ionophore Br-A23187, there are striking effects on slug morphology, patterning and cell differentiation. In the presence of a calcium ionophore, high external Ca2+ levels lead to an increase of intracellular sequestered and free Ca2+, the formation of long slugs, a decrease in the fraction of genetically defined prespore cells and 'stalky' fruiting bodies. Conversely, a lowering of external Ca2+ levels results in a decrease of intracellular Ca2+, the formation of short slugs, an increase in the prespore fraction and 'spory' fruiting bodies. We infer that Ca2+ plays a significant morphogenetic role in D. discoideum development, by selectively promoting the prestalk pathway relative to the prespore pathway.  相似文献   

10.
Summary The effects of divalent cation ionophores, A23187 and X-537A, on the electrical membrane properties were investigated by using the soma membrane of the X-organ of the crayfish. They reduced the amplitude and maximum rate of rise of Ca-action potential in lower concentration. As the concentration increased, a reduction of membrane resistance and hyperpolarization occurred simultaneously. Further increase resulted in membrane depolarization with a further decrease in resistance. The threshold concentration of X537A was 100 times higher than that of A23187. These effects were reversible only when the application period was relatively short, while a longer application resulted in an incomplete reversibility or in no reversibility at all. The ionophore effect was facilitated in high Ca medium and diminished in low Ca medium. In Sr medium, the same effects on the resistance and the membrane potential were barely observable. TEA reduced the effects of A23187 but did not completely inhibit the effects. The Na-action potential was also reduced by the higher concentration of the ionophore. From these results it is concluded that the divalent cation ionophores, A23187 and X537A, carry divalent cation, Ca ions in a physiological medium, into the neuron soma through the membrane and the consequent increase of the intracellular divalent cations induces K conductance increase and that higher concentration of the ionophore induces the increase in the conductance of the other ion species, such as Na.  相似文献   

11.
Parthenogenetic activation of porcine oocytes by using 7% ethanol, 50 or 100 microM A23187 results in an increase in intracellular pH as does prolonged exposure to thimerosal. We attempt to specify which transporters or mechanisms are involved in the observed increase in intracellular pH during oocyte activation. Experiments were performed in the absence of sodium; the presence of 2.5 mM amiloride, a potent inhibitor of the Na(+)/H(+) antiport; in the absence of bicarbonate; and in the presence of 4, 4'-diisothiocyanatodihydrostilbene-2,2'-di-sulfonic acid, disodium salt (H(2)DIDS) for all three activation methods. These treatments had no effect on the increase in intracellular pH induced by the calcium ionophore or thimerosal, but all reduced the increase in pH (P < 0.001) in the 7% ethanol group. This suggests that the Na(+)/H(+) antiport and the HCO(3)(-)/Cl(-) exchangers are not playing a role during treatment with calcium ionophore or thimerosal, and the pH increase observed during treatment with 7% ethanol may be dependent upon a sodium or bicarbonate flux (or both) into the oocyte. Bafilomycin A1 (500 nm), an inhibitor of vacuolar-type H(+) ATPases, had no effect on 7% ethanol or thimerosal treatments, but significantly reduced the increase in intracellular pH observed during calcium ionophore treatment. This may be the result of an initial local increase in intracellular free calcium levels.  相似文献   

12.
Sertoli cell-enriched cultures isolated from immature rat testes by enzymic treatments were investigated by intracellular microelectrode recordings. The hyperpolarization of cells induced by FSH was independent of the age of the rats (7-37 days) and was unchanged by exposure to a hormone-free medium or to a glycine buffer of pH 3. It was reduced by treatments which decreased the electrical coupling between cells either by an increase of intracellular calcium [i.e. calcium ionophore (A 23187, 5 x 10(-6) M), general anaesthetic (heptanol, 3.5 mM) and uncoupler of oxidative phosphorylations (carbonylcyanide m-chlorophenylhydrazone-CCmP, 10(-6) M)] or by a decrease of extracellular calcium [i.e. 0Ca + EGTA (1 mM) medium]. These effects were partly or totally reversed by a recovery period in a drug-free medium. Similar results were obtained by an exposure to trypsin (0.05%) followed by a second mechanical dispersion, but new cell hyperpolarization was induced by a new exposure to FSH. This electrophysiological study suggests an initial effect of FSH on the junctional complex between Sertoli cells, then the control by calcium of this complex.  相似文献   

13.
Calcium dependence of exocytosis in lacrimal gland acinar cells   总被引:1,自引:0,他引:1  
Simultaneous measurements of membranecapacitance and intracellular calcium concentration were used toexamine the calcium dependence of exocytosis in single acinar cellsfrom mouse lacrimal gland and to establish the quantitative relationbetween calcium concentration and rate of exocytosis. Application ofadrenergic or muscarinic agonists elevated intracellular calcium andevoked exocytosis, as indicated by an increase in membrane capacitance of single cells. The capacitance response to agonist stimulation waseliminated by internal dialysis with the calcium buffer EGTA, whichdemonstrated that the increase in intracellular calcium was necessaryfor agonist-evoked exocytosis. When internal calcium was elevated byapplication of the calcium ionophore ionomycin, exocytosis was evokedin the absence of agonist stimulation. Thus an increase inintracellular calcium was necessary and sufficient for exocytosis insingle acinar cells. The rate of change of membrane capacitanceincreased as approximately the third power of the calciumconcentration, which is similar to the dependence of exocytosis rate oncalcium concentration in other secretory cells.

  相似文献   

14.
Arachidonate, at concentrations up to 50 microM, induced dose-dependent calcium efflux from preloaded microsomes prepared from human platelets, but not from unilamellar egg phosphatidylcholine vesicles. Arachidonate-induced efflux from microsomes was not inhibited by indomethacin, 13-azaprostanoic acid, or catalase and superoxide dismutase, indicating that the release was due to arachidonate and not a metabolite. Linolenate (18:3, cis) and linoleate (18:2, cis) induced calcium efflux in a manner similar to arachidonate (20:4, cis), while arachidate (20:0), linolelaidate (18:2, trans), elaidate (18:1, trans), oleate (18:1, cis), stearate (18:0) and palmitate (16:0) had no effect. An experimental method was developed for distinguishing between carrier ionophore, small aqueous pore (i.e., calcium channel), or large aqueous pore (i.e., detergent effect) mechanisms in vesicular efflux systems in which calcium efflux occurs over a period of minutes. This development predicted that with a carrier ionophore mechanism, an increase in either internal or external calcium should competitively inhibit 45Ca efflux. In contrast, 45Ca efflux by diffusion through a small aqueous pore or a large aqueous pore should be measurably insensitive to variations in internal or external calcium. These predictions were experimentally verified in the platelet microsomal system using efflux agents with known mechanisms. Efflux of 45Ca by A23187, a calcium ion carrier ionophore, was sensitive to internal or external calcium competition, while alamethicin, a small aqueous pore channel model, and Triton X-100, a detergent which forms large aqueous pores, mediated 45Ca efflux which was measurably insensitive to variations in internal or external calcium concentration. Arachidonate-induced 45Ca efflux was inhibited by increasing either internal and external calcium concentration, suggesting that the fatty acid functions as a carrier ionophore. Arachidonate-induced 45Ca efflux was also inhibited with extravesicular Sr2+, but not Mn2+ or Ba2+. The dependence of the initial arachidonate efflux rate on arachidonate concentration showed that at least two arachidonates were contained in the calcium-carrier complex. These results are consistent with a model in which arachidonate (A) and an endogenous microsomal component (B) translocate calcium across the membrane through a carrier ionophore mechanism as part of a complex with a stoichiometry of A2B.Ca.  相似文献   

15.
The role of different ion conductances in regulation of the membrane potential (MP) of resting and agonist-stimulated intact endothelium from the guinea pig aorta was investigated. Under resting conditions, the MP measured by the patch-clamp technique varied within the range from –29 to –56 mV (the mean value of –40.8 ± 8.1 mV). Blockers of anomalous (inward) rectifier potassium channels cesium (100 µM) and barium (100 µM) exerted no effect on the MP of endothelium. Superfusion of preparations with calcium-free solution and application of 2 mM nickel depolarized the endothelium. ATP (10 µM) induced hyperpolarization of endothelium with the mean amplitude of 11.4 ± 0.6 mV. The initial phase of this hyperpolarization depended on the external potassium concentration and on the state of intracellular calcium stores, whereas the prolonged phase required the presence of external calcium. In the absence of external calcium, in 25% of recordings transient hyperpolarization was followed by depolarization, which was not observed after substitution of external NaCl for choline. It was concluded that basal activity of calcium-dependent potassium channels contributes to the regulation of the MP of resting endothelium. Stimulation with ATP led to activation of calcium-dependent potassium and nonselective cationic channels. Activation of the former channels produced the initial phase of hyperpolarization, whereas activation of the second channel type evoked the prolonged phase of hyperpolarization.Neirofiziologiya/Neurophysiology, Vol. 28, No. 6, pp. 260–266, November–December, 1996.  相似文献   

16.
The divalent cation ionophore A 23187 was used to evaluate the action of intracellular calcium on net transepithelial water movement across the isolated frog urinary bladder. Incubation with the ionophore increases the net basal water flux in a dose-dependent fashion but independent of the extracellular calcium concentration. Bladders pretreated with A 23187 and exposed thereafter to an increase in calcium concentration exhibit a water permeability that under certain conditions can be comparable to that achieved with antidiuretic hormone (ADH). Lowering the serosal calcium at the peak of the hydrosmotic responses to both ADH and A 23187 inhibited the maintenance of the net water flux. The action of a supramaximal dose of ADH is blunted in bladders pretreated with A 23187, while the hydrosmotic effects of a submaximal dose are enhanced when the ionophore is added together with the hormone. The results show that an increase in transepithelial water movement can be triggered by calcium and that serosal calcium is needed to sustain the response. This hydrosmotic response may be dependent upon the rate at which intracellular calcium concentrations change and on the absolute concentration attained. It is suggested that calcium is involved in the action of ADH on water permeability and may act as a modulator of the hydrosmotic response.  相似文献   

17.
Although inhibition of polymorphonuclear leukocyte activation by beta-adrenoceptor agonists has been recognized for over a decade, effects have only been observed at high drug concentrations and in the presence of theophylline. In this study, catecholamine and prostaglandin modulation of the respiratory burst was evaluated with respect to the mechanism of polymorphonuclear leukocyte activation. Very low concentrations of isoproterenol and prostaglandin E2 inhibited the respiratory burst when induced by chemotactic peptide (N-formyl-methionyl-leucyl-phenylalanine) or calcium ionophore (A23187, ionomycin), but not when initiated by synthetic diacylglycerol. Because formyl-methionyl-leucyl-phenylalanine and ionophore mobilize calcium and arachidonic acid generation follows an increase in intracellular calcium, the arachidonic acid metabolite leukotriene B4 was studied. Isoproterenol at a very low (0.1 nM) concentration also rapidly inhibited leukotriene B4 generation. Since cyclic AMP was increased by isoproterenol regardless of the means of cell activation, modulation of intracellular calcium was evaluated with the fluorescent probe indo-1. A transient increase in calcium after formyl-methionyl-leucyl-phenylalanine or ionophore (but not oleoyl acetylglycerol) cell activation was inhibited by isoproterenol or prostaglandin E2. These results suggest that adrenergic agonists specifically modulate calcium-dependent polymorphonuclear leukocyte function. Because marked inhibition was observed at very low drug concentrations, cyclic AMP-dependent effects may be important in both homeostatic and therapeutic modulation of inflammatory response.  相似文献   

18.
The transient receptor potential (TRP) ion channels are thought to be involved in the entry of calcium ion into cells. In this study, we isolated a cDNA clone, HrTRPV, that shows high homology to Caenorhabditis elegans OSM-9, a TRPV subfamily member of the TRP family, from a Halocynthia roretzi fertilized egg cDNA library. We analyzed its properties using HrTRPV-transfected cells. Upon reduction of extracellular osmolarity, the intracellular calcium concentration was found to increase in HrTRPV-transfected cells. This increase in intracellular calcium concentration was dependent on the presence of extracellular calcium ion and was inhibited by treatment with gadolinium ion, a stretch-activated calcium channel blocker. Thus, these results indicate that ascidian egg HrTRPV is an osmotically sensitive TRP channel.  相似文献   

19.
Stimulation of rabbit neutrophils by the chemotactic factors fMet-Leu-Phe and leukotriene B4, by platelet activating factor, or by arachidonic acid produces a rapid and dose-dependent increase in the amounts of actin and of a 65,000-mol-wt protein associated with the cytoskeleton. Phorbol 12-myristate, 13-acetate, the calcium ionophore A23187 in the presence or absence of EGTA, and the fluorescent calcium chelator quin-2 also cause an increase in cytoskeletal actin. The stimulated increases in the cytoskeletal actin are not dependent on a rise in the intracellular concentration of free calcium and are not mediated by an increase in the intracellular pH or activation of protein kinase C. The increases in the cytoskeletal actin produced by fMet-Leu-Phe and leukotriene B4, but not by phorbol 12-myristate, 13-acetate, are inhibited by high osmolarity. The effect of hyperosmolarity requires a decrease in cell volume, is not mediated by an increase in basal intracellular concentration of free calcium, and is not prevented by pretreating the cells with amiloride. Preincubation of the cells with hyperosmotic solution also inhibits degranulation produced by all the stimuli tested. The inhibitory action of high osmolarity on the fMet-Leu-Phe and leukotriene B4 induced stimulation of cytoskeletal actin is discussed in terms of the possibility that the addition of high osmolarity, either directly or through activation of protein kinase C, causes receptor uncoupling.  相似文献   

20.
The ability of C5a to stimulate lysosomal enzyme release and 45Ca2+ efflux from rabbit neutrophils was studied. C5a stimulated beta-glucuronidase release from cytochalasin B-treated neutrophils either in the presence or absence of extracellular calcium. Depletion of cell calcium by pretreatment with the calcium ionophore A23187 blocked both the ability of C5a to elicit enzyme release in the absence of extracellular calcium and its ability to stimulate 45Ca2+ efflux. Both actions were dose-dependent over the same concentration range (10(-8)-10(-6) M ionophore A23187). In contrast, ionophore pretreatment had no effect on C5a-stimulated enzyme release in the presence of extracellular calcium. These results suggest that (a) release of cell calcium is required for enzyme secretion in the absence of extracellular calcium, and (b) C5a can trigger near-maximal enzyme release by using calcium from either of two sources: the extracellular space or an intracellular site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号