首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analyses of insulin binding to human erythrocytes and to resealed right-side-out and inside-out erythrocyte membrane vesicles have revealed that high affinity insulin binding receptors are present on both sides of the erythrocyte membranes. Insulin binding to human erythrocytes was examined with the use of a binding assay designed to minimize the potential errors arising from the low binding capacity of this cell type and from non-specific binding in the assay. Scatchard analysis of equilibrium binding to the cells revealed a class of high affinity sites with a dissociation constant (Kd) of (1.5 +/- 0.5) X 10(-8) M and a maximum binding capacity of 50 +/- 5 sites per cell. Interestingly, both resealed right-side-out and inside-out membrane vesicles exhibited nearly identical specific sites for insulin binding. At the high affinity binding sites, for both right-side-out and inside-out vesicles, the dissociation constant (Kd) was (1.5 +/- 0.5) X 10(-8) M, and the maximum binding capacity was 17 +/- 3 sites per cell equivalent. These findings suggest that insulin receptors are present on both sides of the plasma membrane and are consistent with the participation of the erythrocyte insulin receptors in an endocytic/recycling pathway which mediates receptor-ligand internalization/externalization.  相似文献   

2.
We have found the existence of specific receptors for the plasminogen activator, urokinase, in A431 human epidermoid carcinoma cells, cultures in plasminogen-free conditions. Two subsets of receptors have been recognized on the basis of 125I-labelled urokinase binding analysis: about 1 X 10(3) high-affinity (Kd = 5.0 X 10(-11) M) and 1 X 10(5) low-affinity (Kd = 9 X 10(-9) M) receptors per cell. The electron microscopic observation of a urokinase: ferritin conjugate has shown single and clustered receptors at the cell surface. Down-regulation of the receptors (T1/2 = 3.77 h) follows the binding of urokinase. The binding does not involve an intact catalytic site and is inhibited by a monoclonal antibody against the Mr 17500 proteolytic fragment of the A chain of urokinase.  相似文献   

3.
Bovine liver and mammary gland (MG) appear metabolically independent of insulin, yet the specificity and kinetics of 125I-insulin (125I-INS) binding to bovine liver and MG microsomes (MIC) indicate the presence of insulin receptors in MIC from both tissues. The insulin receptors from bovine liver (Kd = 7.6 X 10(-10) M) and MG (Kd = 9.6 X 10(-11) M) were similar to each other and to other insulin receptors in their binding affinities and pH optima. Perturbation of rat liver and bovine MG MIC by phospholipase or NaCl treatment increased 125I-INS binding to the membranes, suggesting exposure of cryptic insulin receptors. Different responses in 125I-INS binding to membrane perturbation suggest differences between rat and bovine membranes.  相似文献   

4.
Neuronal cells from 1-day-old rat brain in primary culture have been utilized in the present study to characterize insulin-binding sites and a possible action of insulin on these cells. Binding of 125I-insulin to neuronal cultures was 90% specific and time-dependent and reached equilibrium in 120 min. Specific binding was reversible with greater than 90% of binding dissociable within 120 min with a t1/2 of dissociation of 15 min. Various insulin analogues competed for 125I-insulin binding to neuronal cultures according to their known biological potencies. Scatchard analysis of competition data yielded a typical curvilinear plot providing a class of high affinity (Kd = 11 nM) and low affinity (Kd = 65 nM) binding sites. Light microscopic autoradiographic analysis of 125I-insulin bound to neuronal cultures revealed the presence of silver grains predominantly on the neurites with occasional occurrence on the cell soma. Insulin had no effect on neuronal 2-deoxyglucose uptake in contrast with our previous findings demonstrating a 2-fold stimulation of 2-dGlc uptake into astrocyte glial cells from rat brain (Clarke, D.W., Boyd, F.T., Jr., Kappy, M.S., and Raizada, M. K. (1984) J. Biol. Chem. 259, 11672-11675). Incubation of neuronal cultures with insulin caused a dose-dependent inhibition of [3H]norepinephrine uptake with significant inhibition occurring at 1.67 X 10(-11) M. These findings demonstrate that: 1) neuronal cells in primary culture possess specific insulin receptors which are predominantly located on neurites and 2) insulin modulates monoamine uptake in these cultures which suggests that insulin may modulate neural signaling via specific neuronal insulin receptors.  相似文献   

5.
Transcellular transport of a variety of ligands may be an important mechanism by which regulatory substances reach their site of action. We have studied the transcellular transport of two 6,000-mol-wt proteins, epidermal growth factor (EGF) and insulin, across polarized Madin-Darby canine kidney (MDCK) cells grown on dual-sided chambers on a nitrocellulose filter substrate. When grown on these chambers, MDCK cells are polarized and express distinct basal and apical surfaces. MDCK cells are capable of unidirectional transport of EGF from the basal-to-apical direction, 50% of bound EGF transported in 2 h. Transport was inhibited by the addition of unlabeled EGF in a dose-dependent manner. Anti-EGF receptor Ab, which inhibited binding, also inhibited transport. No transport in the apical-to-basal direction is noted. Insulin transport is not observed in either direction. Transport correlates with the presence of ligand-specific receptors on the cell surface. Hence, EGF receptors (Ro = 48,000, Kd = 3.5 X 10(-10) M) are found only on the basal surface of the MDCK cells and neither surface expresses insulin receptors. Characterization of the EGF receptors on MDCK cells, as assessed by affinity, molecular mass, and anti-receptor antibody binding reveals that this receptor has similar characteristics to EGF receptors previously described on a variety of cells. Hence, the EGF receptor can function as a transporter of EGF across an epithelial cell barrier.  相似文献   

6.
In order to determine whether the human insulin receptor ectodomain can be expressed as a functional protein, the coding regions for the transmembrane and cytoplasmic domain of a full-length human insulin receptor cDNA were deleted by site-directed mutagenesis, and the resultant construct was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH3T3 cells, a cell line secreting an insulin binding protein was isolated. The insulin binding alpha subunit had an Mr of 138,000 and a beta subunit of Mr 48,000 (compared to 147,000 and 105,000 for the full-length human insulin receptor expressed in NIH3T3 cells). This difference in size of the alpha subunit was due to a difference in glycosylation as N-glycanase digestion reduced the apparent size of the alpha subunits of secreted and normal membrane-bound receptors to identical values. The secreted receptor formed disulfide-linked heterotetrameric structures with an Mr of 280,000. It was synthesized as an Mr 160,000 precursor which was cleaved into mature subunits with a t1/2 of 3 h. Increasing expression of the cDNA by induction with sodium butyrate lead to the appearance of an Mr 180,000 protein in the medium as well as the mature alpha and beta subunits. A Scatchard plot of insulin binding to the secreted receptor was curvilinear with a Kd of 7 X 10(-10) M for the high affinity sites and 10(-7) M for the low affinity site (compared to Kd values of 1.1 X 10(-9) M and 10(-7) M, respectively, for human insulin receptors expressed in these cells.  相似文献   

7.
8.
R P Millar  A Garritsen  E Hazum 《Peptides》1982,3(5):789-792
Gonadotropin-releasing hormone (GnRH) binding sites in intact Leydig cells and in membrane preparations were investigated using 125I-labeled GnRH agonist and antagonist. Binding was saturable and involved a single class of high affinity sites. Intact Leydig cells and a membrane preparation had a higher affinity for GnRH agonist (Kd 3.0 +/- 1.7 X 10(-10) M) than for GnRH antagonist (Kd 10.0 +/- 1.8 X 10(-10) M). With anterior pituitary membranes the Kd was 2.8 +/- 0.7 X 10(-10) M for the agonist and 2.4 +/- 1.4 X 10(-10) M for the antagonist. The Kd for GnRH was similar for Leydig cells and the anterior pituitary. Chymotrypsin and trypsin digestion decreased receptor binding, but neuraminidase increased Leydig cell binding in contrast to the decrease in binding observed with pituitary receptors. The results suggest that the Leydig cell GnRH binding sites may differ from the pituitary receptor which may be related to structural differences in GnRH-like peptides recently described in extracts of rat testis.  相似文献   

9.
Stable transfectants of Chinese hamster ovary (CHO) cells were developed that expressed the protein encoded by a human insulin-like growth factor I (IGF-I) receptor cDNA. The transfected cells expressed approximately 25,000 high affinity receptors for IGF-I (apparent Kd of 1.5 X 10(-9) M), whereas the parental CHO cells expressed only 5,000 receptors per cell (apparent Kd of 1.3 X 10(-9) M). A monoclonal antibody specific for the human IGF-I receptor inhibited IGF-I binding to the expressed receptor and immunoprecipitated polypeptides of apparent Mr values approximately 135,000 and 95,000 from metabolically labeled lysates of the transfected cells but not control cells. The expressed receptor was also capable of binding IGF-II with high affinity (Kd approximately 3 nM) and weakly recognized insulin (with about 1% the potency of IGF-I). The human IGF-I receptor expressed in these cells was capable of IGF-I-stimulated autophosphorylation and phosphorylation of endogenous substrates in the intact cell. This receptor also mediated IGF-I-stimulated glucose uptake, glycogen synthesis, and DNA synthesis. The extent of these responses was comparable to the stimulation by insulin of the same biological responses in CHO cells expressing the human insulin receptor. These results indicate that the isolated cDNA encodes a functional IGF-I receptor and that there are no inherent differences in the abilities of the insulin and IGF-I receptors to mediate rapid and long term biological responses when expressed in the same cell type. The high affinity of this receptor for IGF-II also suggests that it may be important in mediating biological responses to IGF-II as well as IGF-I.  相似文献   

10.
Insulin receptors have been characterized in rat prostatic epithelial cells by using [125I]insulin and a variety of physicochemical conditions. The binding data at equilibrium (2 h at 15 degrees C) could be interpreted in terms of two populations of insulin receptors: a class of receptors with high affinity (Kd = 2.16 nM) and low binding capacity (28.0 fmol mg-1 protein), and another class of receptors with low affinity (Kd = 0.29 microM) and high binding capacity (1.43 pmol mg-1 protein). Proinsulin exhibited a 63-fold lower affinity than insulin for binding sites whereas unrelated peptides were ineffective. The specific binding of insulin increased by about 50 per cent after 96 h of fasting; this increase could be explained by an increase of both the number of the high affinity-low capacity sites and the affinity of the low affinity-high capacity sites. These results together with previous studies on insulin action at the prostatic level strongly suggest that insulin may exert a physiological role on the prostatic epithelium.  相似文献   

11.
In this report we describe the use of the baculovirus expression system to overproduce the human insulin holoreceptor (HIR) and a truncated, secretory version of the HIR cDNA (HIRsec) consisting of the alpha subunit and the extracellular portion of the beta subunit (beta'). Sf9 cells infected with the full-length HIR viruses synthesize recombinant HIR (rHIR) with an insulin-binding alpha subunit of apparent Mr = 110,000 and a beta subunit of apparent Mr = 80,000. Uncleaved alpha beta proreceptor accumulates in infected cells. Both of these forms assemble into higher order disulfide-linked dimers or heterotetramers of apparent Mr greater than 350,000. Insulin-binding activity in cells infected with rHIR viruses is present predominantly on the extracellular aspect of the plasma membrane (greater than 80%). Insulin binding to the full-length rHIR occurs with typical complex kinetics with Kd1 = 0.5-1 x 10(-9) M and Kd2 = 10(-7) M and receptors are present in large amounts in infected cells (1 x 10(6) receptors/cell; 1-2 mg HIR/10(9) cells). The full-length rHIR undergoes insulin-dependent autophosphorylation; half-maximal activation of beta subunit autophosphorylation occurs at 1-2 x 10(-8) M. The alpha beta proreceptor also becomes phosphorylated in vitro. Analysis of tryptic phosphopeptides derived from in vitro autophosphorylated beta subunit and alpha beta proreceptor reveals a pattern of phosphorylation that is indistinguishable from that of authentic placental HIR. Sf9 cells infected with rHIRsec viruses synthesize and secrete an (alpha beta')2 heterotetrameric complex having an insulin-binding alpha subunit of apparent Mr = 110,000 and a truncated beta' subunit of apparent Mr = 45,000 that lacks kinase activity. The rHIRsec complex purified from the conditioned medium of infected cells binds insulin with high affinity (Kd = 10(-9) M).  相似文献   

12.
Monoiodinated radioligands of the homologous 36-amino acid peptides, neuropeptide Y (NPY) and peptide YY, were prepared by reverse phase high performance liquid chromatography with isocratic elution. [125I-Tyr1]- and [125I-Tyr36]monoiodoNPY bound equally well to a single class of high affinity binding sites on synaptosomal membranes prepared from porcine hippocampus (Kd = 1.0 X 10(-10) M) whereas iodine substitution in Tyr27, for example, partly interfered with the receptor binding. The receptors on the hippocampal membranes did not distinguish between neuropeptide Y and peptide YY either in their monoiodinated or in their unlabeled forms. Six out of twelve human neuroblastoma cell lines had high affinity binding sites for monoiodinated NPY ranging from 2 to 145 X 10(3) sites per cell. The NPY binding to three of the cell lines, SMS-MSN, SMS-KAN, and CHP-234 was of relatively high affinity (Kd = 1.3 to 6.1 X 10(-10) M), and, as in the hippocampal membranes, the long C-terminal fragment, NPY(13-36)peptide was also a relatively potent ligand for these receptors. Two other neuroblastoma cell lines, MC-IXC and CHP-212, expressed NPY receptors characterized by a lower affinity (Kd = 4.8 and 24.6 X 10(-9) M) and negligible cross-reactivity with the C-terminal fragment. It is concluded that monoiodinated radioligands of the tyrosine-rich neuropeptide Y can be prepared and that receptors for these ligands in two apparently different subtypes are found on a series of human neuroblastoma cell lines.  相似文献   

13.
Thymic endocrine epithelial cell line TEA3A1 can be maintained and passaged in a serum-free WAJC404A medium supplemented with insulin, transferrin, dexamethasone and EGF. EGF not only promotes the growth of these cells but also regulates the activation of phospholipase A2 enzyme activity. The binding of [125I]EGF to the TEA3A1 cells is temperature and time dependent, saturable and can be blocked by excess unlabelled EGF. Two classes of EGF receptors are found on these cells. One with Kd of 5 X 10(-11)M (approximately 3000 sites/cell) and the other with Kd of 5 X 10(-9)M (approximately 30,000 sites/cell). The resynthesis of EGF receptor in TEA3A1 cells after down-regulation requires about 24 hrs and can be blocked by both actinomycin D and cycloheximide.  相似文献   

14.
Minicells from Escherichia coli DS410 harboring cDNA for human interferon (IFN) alpha 1 or alpha 2 were metabolically labeled with [3H]leucine and the radioactive IFN was purified to homogeneity by immune precipitation with anti-IFN-alpha serum. These preparations of radioactive IFN-alpha 1 and -alpha 2 were used to study the binding on two human (FL and Daudi) and one bovine (MDBK) cell lines. IFN-alpha 2 specifically bound well to both human and bovine cells, while IFN-alpha 1 bound very poorly to human cells but well to bovine cells. Specific binding of radioactive IFN-alpha 2 to these cell lines was completely inhibited by not only nonradioactive IFN-alpha 2 but also IFN-alpha 1, and binding of IFN-alpha 1 to bovine cell was also competed by IFN-alpha 2 as well as IFN-alpha 1, indicating that the receptors for both IFNs are identical. However, 50-100-fold (on human cells) or 4-fold (on bovine cell) more nonradioactive IFN-alpha 1 than -alpha 2 was required to inhibit the binding of radioactive IFN-alpha 2 to the receptors. Scatchard analysis showed that IFN-alpha 1 and -alpha 2 bind to the receptors on human cells with an apparent Kd of greater than 6 X 10(-10) and 3 X 10(-11) M, respectively, while on bovine cells with a Kd of 4.2 X 10(-11) and 1.6 X 10(-11) M, respectively. These results show that the different target cell specificity of IFN-alpha 1 and -alpha 2 in regard to antiviral activity (Streuli, M., Hall, A., Boll, W., Stewart, W. E., II, Nagata, S., and Weissmann, C. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 2848-2852) is due to the different binding activity of IFN-alpha molecules to their common receptors.  相似文献   

15.
The asialoglycoprotein receptor has been identified on a continuous human hepatoma cell line, HepG2. This receptor requires Ca2+ for ligand binding and is specific for asialoglycoprotein. There are approximately 150,000 ligand molecules bound/cell at 4 degrees C. These receptors represent a homogeneous population of high affinity binding sites with Kd = 7 X 10(-9) M. From the rate of 125I-ASOR binding at 4 degrees C, kon was 0.95 X 10(6) M-1 min-1. Uptake of 125I-ASOR at 37 degrees C was approximately 0.02 pmol/min/10(6) cells.  相似文献   

16.
Maximum 125I-IGF-I/Sm-C total binding to chick embryo fibroblasts was 3% at +37 degrees C and decreased to less than 1% in presence of 2.8 X 10(-9) M unlabelled IGF-I/Sm-C. Insulin did not compete with IGF-I/Sm-C for the binding to cells. Biological action of IGF-I/Sm-C was evaluated on 2-deoxyglucose and alpha-aminoisobutyrate uptake. Results are compared with those obtained with insulin. Maximal peptide effects on the two transport processes were obtained at a 0.65 X 10(-7) M concentration and for a 120 minute association time, whereas cells were markedly less sensitive to insulin and time response curves were different. These results suggest that insulin action on nutrient uptake in chick embryo fibroblasts is not mediated by the binding of the hormone to IGF-I/Sm-C receptors.  相似文献   

17.
In the present study, we focused on the insulin-receptor binding in circulating erythrocytes of N-benzoyl-D-phenylalanine (NBDP) and metformin in neonatal streptozotocin (nSTZ)-induced male Wistar rats. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors in NBDP and metformin-treated diabetic rats. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (53.0 +/- 3.1%) than in NBDP (62.0 +/- 3.1%), metformin (66.0 +/- 3.3%) and NBDP and metformin combination-treated (72.0 +/- 4.2%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with NBDP and metformin-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from NBDP and metformin-treated diabetic rats having NBDP 2.0 +/- 0.10 x 10(-10) M(-1) (Kd1); 12.0 +/- 0.85 x 10(-8) M(-1) (Kd2), Metformin 2.1 +/- 0.15 x 10(-10) M(-1) (Kd1); 15.0 +/- 0.80 x 10(-8) M(-1) (Kd2), NBDP and metformin 2.7 +/- 0.10 x 10(-10) M(-1) (Kd1); 20.0 +/- 1.2 x 10(-8) M(-1) (Kd2) compared with 0.9 +/- 0.06 x 10(-10) M(-1) (Kd1); 6.0 +/- 0.30 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in nSTZ induced diabetic control rats. Treatment with NBDP along with metformin significantly improved specific insulin binding, with receptor number and affinity binding reaching almost normal non-diabetic levels. The data presented here show that NBDP along with metformin increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.  相似文献   

18.
The com10 mutant of Haemophilus influenzae binds donor DNA reversibly, but is deficient in uptake. The DNA binding has all the characteristics of interaction with a protein receptor; it is saturable, reversible, and specific. However, binding specificity is 6-fold weaker in com10 than is uptake specificity in wild-type. The binding of small (120 base pairs) and large (14,400 base pairs) DNA molecules were compared. For small molecules, binding data fitted a straight line by Scatchard analysis (Bmax = 4.8 DNA molecules/cell, Kd = 0.5 X 10(-9) M). In contrast, for large DNA molecules, the Scatchard plot was not linear. A high affinity binding (Kd = 0.4 X 10(-12) M) and a lower affinity binding (Kd = 1.2 X 10(-11) M) were found with a total number of 3 molecules bound per cell. In wild-type cells, 3.2 large molecules were taken up per cell, whereas up to 40 small 120-base pair DNA fragments were taken up per cell. Uptake of small DNA molecules followed a Michaelis-Menten function with a Km of 0.5 X 10(-9) M and a maximal initial velocity of 1.5 molecules/cell/min at room temperature. For large DNA molecules, maximal initial velocity was approximately 2 molecules/cell/min at room temperature. The analysis of the binding and uptake data suggest to us that a receptor or a receptor complex is responsible for the uptake of either a single large DNA molecule or, successively, a number of small DNA molecules.  相似文献   

19.
Insulin-like growth factors stimulate chemotaxis in human melanoma cells   总被引:7,自引:0,他引:7  
Insulin and insulin-like growth factors stimulate motility in the highly metastatic human melanoma cell line, A2058. Insulin-like growth factor-I (IGF-I) is the most potent with a maximal response at a concentration of 10 nM compared to the activities of insulin and insulin-like growth factor-II (IGF-II) which peak at 300-400 nM. Using checkerboard analysis, the responses to IGF-I and insulin are predominantly chemotactic, although insulin had a significant chemokinetic component. Pertussis toxin does not inhibit the response to any of these polypeptides. However, in previous studies, it was shown that the motile response to autocrine motility factor from these same A2058 cells was markedly inhibited by pertussis toxin. 125I-labelled IGF-I binds saturably and specifically to the A2058 cells. Scatchard analysis indicates a high binding affinity (Kd approximately 3 x 10(-10) M) and an estimated 5000 receptors/cell. These studies indicate that in addition to their mitogenic properties, certain growth factors may profoundly enhance metastasis of tumor cells by their ability to induce motility.  相似文献   

20.
The specific cell surface receptors for lymphotoxin (LT) which are expressed on murine fibroblast L.P3 cells, a subline of L929 cells, were found to consist of a single class of specific high-affinity receptors with a dissociation constant (Kd) of 3.8 X 10(-10) M and a density of 5.8 X 10(3) sites/cell. Similarly, murine fibroblast L929 cells, human melanoma A375 cells and human cervical carcinoma HeLa-S3 cells had about 7.2 X 10(3), 3.5 X 10(3), and 6.6 X 10(3) sites/cell with Kd values of 1.4 X 10(-10), 0.5 X 10(-10), and 1.1 X 10(-10) M, respectively. Among the LT receptor-positive cell lines, there was no direct correlation between the level of specific LT binding and the sensitivity to the cytotoxic or cytostatic effect of LT. Cross-linking of 125I-LT to the cell surface receptors with disuccinimidyl suberate, followed by two-dimensional gel electrophoresis of the cell lysate, revealed two kinds of LT-LT receptor complexes with molecular weights of 70 and 97 kDa, and having the same pI value of 6.8. Cell-bound 125I-LT was internalized within 1 h and degraded intracellularly, and finally secreted into the medium within a few hours. Appropriate concentrations of LT and interferon gamma (IFN gamma) showed synergistic cytotoxicity toward murine fibroblast L.P3 cells and human monocytoma U937 cells, but these cytokines were only slightly cytotoxic individually. Preincubation of these cells with IFN gamma increased the total number of LT receptors without any significant change in the dissociation constant or in the molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号