首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe in detail the conformations of the inhibitor stigmatellin in its free form and bound to the ubiquinone-reducing (Q(B)) site of the reaction center and to the ubiquinol-oxidizing (Q(o)) site of the cytochrome bc(1) complex. We present here the first structures of a stereochemically correct stigmatellin in complexes with a bacterial reaction center and the yeast cytochrome bc1 complex. The conformations of the inhibitor bound to the two enzymes are not the same. We focus on the orientations of the stigmatellin side-chain relative to the chromone head group, and on the interaction of the stigmatellin side-chain with these membrane protein complexes. The different conformations of stigmatellin found illustrate the structural variability of the Q sites, which are affected by the same inhibitor. The free rotation about the chi1 dihedral angle is an essential factor for allowing stigmatellin to bind in both the reaction center and the cytochrome bc1 pocket.  相似文献   

2.
Pierre Joliot  Anne Joliot 《BBA》2005,1706(3):204-214
The kinetics of reoxidation of the primary acceptor Qa has been followed by measuring the changes in the fluorescence yield induced by a series of saturating flashes in intact cells of Rhodobacter sphaeroides in anaerobic conditions. At 0 °C, about half of Qa is reoxidized in about 200 ms while reoxidation of the remaining fraction is completed in several seconds to minutes. The fast phase is associated with the transfer of ubiquinone formed at site Qo of the cytochrome bc1 complex while the slowest phase is associated with the diffusion of ubiquinone present in the membrane prior to the flash excitation. The biphasic kinetics of Qa oxidation is interpreted assuming that the electron chain is organized in supercomplexes that associate two RCs and one cyt bc1 complex, which allows a fast transfer of quinone formed at the level of cyt bc1 complex to the RCs. In agreement with this model, the fast phase of Qa reoxidation is inhibited by myxothiazol, a specific inhibitor of cyt bc1. The PufX-deleted mutant displays only the slowest phase of Qa oxidation; it is interpreted by the lack of supramolecular organization of the photosynthetic chain that leads to a larger average distance between cyt bc1 and RCs.  相似文献   

3.
Antony R. Crofts  Sangmoon Lhee  Jerry Cheng 《BBA》2006,1757(8):1019-1034
The Q-cycle mechanism of the bc1 complex explains how the electron transfer from ubihydroquinone (quinol, QH2) to cytochrome (cyt) c (or c2 in bacteria) is coupled to the pumping of protons across the membrane. The efficiency of proton pumping depends on the effectiveness of the bifurcated reaction at the Qo-site of the complex. This directs the two electrons from QH2 down two different pathways, one to the high potential chain for delivery to an electron acceptor, and the other across the membrane through a chain containing heme bL and bH to the Qi-site, to provide the vectorial charge transfer contributing to the proton gradient. In this review, we discuss problems associated with the turnover of the bc1 complex that center around rates calculated for the normal forward and reverse reactions, and for bypass (or short-circuit) reactions. Based on rate constants given by distances between redox centers in known structures, these appeared to preclude conventional electron transfer mechanisms involving an intermediate semiquinone (SQ) in the Qo-site reaction. However, previous research has strongly suggested that SQ is the reductant for O2 in generation of superoxide at the Qo-site, introducing an apparent paradox. A simple gating mechanism, in which an intermediate SQ mobile in the volume of the Qo-site is a necessary component, can readily account for the observed data through a coulombic interaction that prevents SQ anion from close approach to heme bL when the latter is reduced. This allows rapid and reversible QH2 oxidation, but prevents rapid bypass reactions. The mechanism is quite natural, and is well supported by experiments in which the role of a key residue, Glu-295, which facilitates proton transfer from the site through a rotational displacement, has been tested by mutation.  相似文献   

4.
5.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

6.
Raul Covian 《BBA》2008,1777(9):1079-1091
The dimeric cytochrome bc1 complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc1 complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

7.
Non-heme iron is a conservative component of type II photosynthetic reaction centers of unknown function. We found that in the reaction center from Rba. sphaeroides it exists in two forms, high and low spin ferrous states, whereas in Rsp. rubrum mostly in a low spin state, in line with our earlier finding of its low spin state in the algal photosystem II reaction center (Burda et al., 2003). The temperature dependence of the non-heme iron displacement studied by Mössbauer spectroscopy shows that the surrounding of the high spin iron is more flexible (Debye temperature ~ 165 K) than that of the low spin atom (~ 207 K). Nuclear inelastic scattering measurements of the collective motions in the Rba. sphaeroides reaction center show that the density of vibrational states, originating from non-heme iron, has well-separated modes between lower (4-17 meV) and higher (17-25 meV) energies while in the one from Rsp. rubrum its distribution is more uniform with only little contribution of low energy (~ 6 meV) vibrations. It is the first experimental evidence that the fluctuations of the protein matrix in type II reaction center are correlated to the spin state of non-heme iron. We propose a simple mechanism in which the spin state of non-heme iron directly determines the strength of coupling between the two quinone acceptors (QA and QB) and fast collective motions of protein matrix that play a crucial role in activation and regulation of the electron and proton transfer between these two quinones. We suggest that hydrogen bond network on the acceptor side of reaction center is responsible for stabilization of non-heme iron in different spin states.  相似文献   

8.
Matthieu de Rivoyre 《BBA》2010,1797(11):1780-1794
Photosynthetic membranes accommodate densely packed light-harvesting complexes which absorb light and convey excitation to the reaction center (RC). The relationship between the fluorescence yield (φ) and the fraction (x) of closed RCs is informative about the probability for an excitation reaching a closed RC to be redirected to another RC. In this work, we have examined in this respect membranes from various bacteria and searched for a correlation with the arrangement of the light-harvesting complexes as known from atomic force or electron microscopies. A first part of the paper is devoted to a theoretical study analyzing the φ(x) relationship in various models: monomeric or dimeric RC-LH1 core complexes, with or without the peripheral LH2 complexes. We show that the simple “homogeneous” kinetic treatment used here agrees well with more detailed master equation calculations. We also discuss the agreement between information derived from the present technique and from singlet annihilation experiments. The experimental results show that the enhancement of the cross section of open RCs due to excitation transfer from closed units varies from 1.5 to 3 depending on species. The ratio of the core to core transfer rate (including the indirect pathway via LH2) to the rate of trapping in open units is in the range of 0.5 to 4. It is about 1 in Rhodobacter sphaeroides and does not increase significantly in mutants lacking LH2—despite the more numerous contacts between the dimeric core complexes expected in this case. The connectivity in this bacterium is due in good part to the fast transfer between the two partners of the dimeric (RC-LH1-PufX)2 complex. The connectivity is however increased in the carotenoidless and LH2-less strain R26, which we ascribe to an anomalous LH1. A relatively high connectivity was found in Rhodospirillum photometricum, although not as high as predicted in the calculations of Fassioli et al. (2010). This illustrates a more general discrepancy between the measured efficiency of core to core excitation transfer and theoretical estimates. We argue that the limited core to core connectivity found in purple bacteria may reflect a trade-off between light-harvesting efficiency and the hindrance to quinone diffusion that would result from too tightly packed LH complexes.  相似文献   

9.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   

10.
Chlorophyll a fluorescence rise (O-J-I-P transient) was in literature simulated using models describing reactions occurring solely in photosystem II (PSII) and plastoquinone (PQ) pool as well as using complex models which described, in addition to the above, also subsequent electron transport occurring beyond the PQ pool. However, there is no consistency in general approach how to formulate a kinetic model and how to describe particular reactions occurring even in PSII only. In this work, simple kinetic PSII models are considered always with the same electron carriers and same type of reactions but some reactions are approached in different ways: oxygen evolving complex is considered bound to PSII or “virtually” separated from PSII; exchange of doubly reduced secondary quinone PSII electron acceptor, QB, with PQ molecule from the PQ pool is described by one second order reaction or by two subsequent reactions; and all possible reactions or only those which follow in logical order are considered. By combining all these approaches, eight PSII models are formulated which are used for simulations of the chlorophyll a fluorescence transients. It is shown that the different approaches can lead to qualitatively different results. The approaches are compared with other models found elsewhere in the literature and therefore this work can help the readers to better understand the other models and their results.  相似文献   

11.
The recent crystallographic structure at 3.0 Å resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone QB. The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O2 evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of QA and QB were found in the crystallized PSII. We propose that the extra quinones are located in the QB cavity and serve as a PSII intrinsic pool of electron acceptors.  相似文献   

12.
In this work, we report the unique case of bacteriochlorophyll (BChl) - protein covalent attachment in a photosynthetic membrane complex caused by a single mutation. The isoleucine L177 was substituted by histidine in the photosynthetic reaction center (RC) of Rhodobacter sphaeroides. Pigment analysis revealed that one BChl molecule was missing in the acetone-methanol extract of the I(L177)H RCs. SDS-PAGE demonstrated that this BChl molecule could not be extracted with organic solvents apparently because of its stable covalent attachment to the mutant RC L-subunit. Our data indicate that the attached bacteriochlorophyll is one of the special pair BChls, P(A). The chemical nature of this covalent interaction remains to be identified.  相似文献   

13.
A native structure of the cytochrome b(6)f complex with improved resolution was obtained from crystals of the complex grown in the presence of divalent cadmium. Two Cd(2+) binding sites with different occupancy were determined: (i) a higher affinity site, Cd1, which bridges His143 of cytochrome f and the acidic residue, Glu75, of cyt b(6); in addition, Cd1 is coordinated by 1-2 H(2)O or 1-2 Cl(-); (ii) a second site, Cd2, of lower affinity for which three identified ligands are Asp58 (subunit IV), Glu3 (PetG subunit) and Glu4 (PetM subunit). Binding sites of quinone analogue inhibitors were sought to map the pathway of transfer of the lipophilic quinone across the b(6)f complex and to define the function of the novel heme c(n). Two sites were found for the chromone ring of the tridecyl-stigmatellin (TDS) quinone analogue inhibitor, one near the p-side [2Fe-2S] cluster. A second TDS site was found on the n-side of the complex facing the quinone exchange cavity as an axial ligand of heme c(n). A similar binding site proximal to heme c(n) was found for the n-side inhibitor, NQNO. Binding of these inhibitors required their addition to the complex before lipid used to facilitate crystallization. The similar binding of NQNO and TDS as axial ligands to heme c(n) implies that this heme utilizes plastoquinone as a natural ligand, thus defining an electron transfer complex consisting of hemes b(n), c(n), and PQ, and the pathway of n-side reduction of the PQ pool. The NQNO binding site explains several effects associated with its inhibitory action: the negative shift in heme c(n) midpoint potential, the increased amplitude of light-induced heme b(n) reduction, and an altered EPR spectrum attributed to interaction between hemes c(n) and b(n). A decreased extent of heme c(n) reduction by reduced ferredoxin in the presence of NQNO allows observation of the heme c(n) Soret band in a chemical difference spectrum.  相似文献   

14.
The ultrafast (< 100 fs) conversion of delocalized exciton into charge-separated state between the primary donor P700 (bleaching at 705 nm) and the primary acceptor A0 (bleaching at 690 nm) in photosystem I (PS I) complexes from Synechocystis sp. PCC 6803 was observed. The data were obtained by application of pump-probe technique with 20-fs low-energy pump pulses centered at 720 nm. The earliest absorbance changes (close to zero delay) with a bleaching at 690 nm are similar to the product of the absorption spectrum of PS I complex and the laser pulse spectrum, which represents the efficiency spectrum of the light absorption by PS I upon femtosecond excitation centered at 720 nm. During the first ∼ 60 fs the energy transfer from the chlorophyll (Chl) species bleaching at 690 nm to the Chl bleaching at 705 nm occurs, resulting in almost equal bleaching of the two forms with the formation of delocalized exciton between 690-nm and 705-nm Chls. Within the next ∼ 40 fs the formation of a new broad band centered at ∼ 660 nm (attributed to the appearance of Chl anion radical) is observed. This band decays with time constant simultaneously with an electron transfer to A1 (phylloquinone). The subtraction of kinetic difference absorption spectra of the closed (state P700+A0A1) PS I reaction center (RC) from that of the open (state P700A0A1) RC reveals the pure spectrum of the P700+A0 ion-radical pair. The experimental data were analyzed using a simple kinetic scheme: An* [(PA0)*A1 P+A0A1] P+A0A1, and a global fitting procedure based on the singular value decomposition analysis. The calculated kinetics of transitions between intermediate states and their spectra were similar to the kinetics recorded at 694 and 705 nm and the experimental spectra obtained by subtraction of the spectra of closed RCs from the spectra of open RCs. As a result, we found that the main events in RCs of PS I under our experimental conditions include very fast (< 100 fs) charge separation with the formation of the P700+A0A1 state in approximately one half of the RCs, the ∼ 5-ps energy transfer from antenna Chl* to P700A0A1 in the remaining RCs, and ∼ 25-ps formation of the secondary radical pair P700+A0A1.  相似文献   

15.
The cationic β-sheet cyclic tetradecapeptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) is a diastereomeric lysine ring-size analog of the potent naturally occurring antimicrobial peptide gramicidin S (GS) which exhibits enhanced antimicrobial but markedly reduced hemolytic activity compared to GS itself. We have previously studied the binding of GS14dK4 to various phospholipid bilayer model membranes using isothermal titration calorimetry [Abraham, T. et al. (2005) Biochemistry 44, 2103-2112]. In the present study, we compare the ability of GS14dK4 to bind to and disrupt these same phospholipid model membranes by employing a fluorescent dye leakage assay to determine the ability of this peptide to permeabilize large unilamellar vesicles. We find that in general, the ability of GS14dK4 to bind to and to permeabilize phospholipid bilayers of different compositions are not well correlated. In particular, the binding affinity of GS14dK4 varies markedly with the charge and to some extent with the polar headgroup structure of the phospholipid and with the cholesterol content of the model membrane. Specifically, this peptide binds much more tightly to anionic than to zwitterionic phospholipids and much less tightly to cholesterol-containing than to cholesterol-free model membranes. In addition, the maximum extent of binding of GS14dK4 can also vary considerably with phospholipid composition in a parallel fashion. In contrast, the ability of this peptide to permeabilize phospholipid vesicles is only weakly dependent on phospholipid charge, polar headgroup structure or cholesterol content. We provide tentative explanations for the observed lack of a correlation between the affinity and extent of GS14dK4 binding to, and degree of disruption of the structure and integrity of, phospholipid bilayers membranes. We also present evidence that the lack of correlation between these two parameters may be a general phenomenon among antimicrobial peptides. Finally, we demonstrate that the affinity of binding of GS14dK4 to various phospholipid bilayer membranes is much more strongly correlated with the antimicrobial and hemolytic activities of this peptide than with its effect on the rate and extent of dye leakage in these model membrane systems.  相似文献   

16.
The mechanism(s) underlying the sorting of integral membrane proteins between the Golgi complex and the plasma membrane remain uncertain because no specific Golgi retention signal has been found. Moreover one can alter a protein's eventual localization simply by altering the length of its transmembrane domain (TMD). M. S. Bretscher and S. Munro (SCIENCE: 261:1280-1281, 1993) therefore proposed a physical sorting mechanism based on the hydrophobic match between the proteins' TMD and the bilayer thickness, in which cholesterol would regulate protein sorting by increasing the lipid bilayer thickness. In this model, Golgi proteins with short TMDs would be excluded from cholesterol-enriched domains (lipid rafts) that are incorporated into transport vesicles destined for the plasma membrane. Although attractive, this model remains unproven. We therefore evaluated the energetic feasibility of a cholesterol-dependent sorting process using the theory of elastic liquid crystal deformations. We show that the distribution of proteins between cholesterol-enriched and cholesterol-poor bilayer domains can be regulated by cholesterol-induced changes in the bilayer physical properties. Changes in bilayer thickness per se, however, have only a modest effect on sorting; the major effect arises because cholesterol changes also the bilayer material properties, which augments the energetic penalty for incorporating short TMDs into cholesterol-enriched domains. We conclude that cholesterol-induced changes in the bilayer physical properties allow for effective and accurate sorting which will be important generally for protein partitioning between different membrane domains.  相似文献   

17.
Reaction centers (RCs) of purple bacteria are uniquely suited objects to study the mechanisms of the photosynthetic conversion of light energy into chemical energy. A recently introduced method of higher order derivative spectroscopy [I.K. Mikhailyuk, H. Lokstein, A.P. Razjivin, A method of spectral subband decomposition by simultaneous fitting the initial spectrum and a set of its derivatives, J. Biochem. Biophys. Methods 63 (2005) 10-23] was used to analyze the NIR absorption spectra of RC preparations from Rhodobacter (R.) sphaeroides strain 2R and Blastochloris (B.) viridis strain KH, containing bacteriochlorophyll (BChl) a and b, respectively. Q(y) bands of individual RC porphyrin components (BChls and bacteriopheophytins, BPheo) were identified. The results indicate that the upper exciton level P(y+) of the photo-active BChl dimer in RCs of R. sphaeroides has an absorption maximum of 810nm. The blue shift of a complex integral band at approximately 800nm upon oxidation of the RC is caused primarily by bleaching of P(y+), rather than by an electrochromic shift of the absorption band(s) of the monomeric BChls. Likewise, the disappearance of a band peaking at 842nm upon oxidation of RCs from B. viridis indicates that this band has to be assigned to P(y+). A blue shift of an absorption band at approximately 830nm upon oxidation of RCs of B. viridis is also essentially caused by the disappearance of P(y+), rather than by an electrochromic shift of the absorption bands of monomeric BChls. Absorption maxima of the monomeric BChls, B(B) and B(A) are at 802 and 797nm, respectively, in RCs of R. sphaeroides at room temperature. BPheo co-factors H(B) and H(A) peak at 748 and 758nm, respectively, at room temperature. For B. viridis RCs the spectral positions of H(B) and H(A) were found to be 796 and 816nm, respectively, at room temperature.  相似文献   

18.
Marcin Sarewicz 《BBA》2010,1797(11):1820-31372
In addition to its bioenergetic function of building up proton motive force, cytochrome bc1 can be a source of superoxide. One-electron reduction of oxygen is believed to occur from semiquinone (SQo) formed at the quinone oxidation/reduction Qo site (Qo) as a result of single-electron oxidation of quinol by the iron-sulfur cluster (FeS) (semiforward mechanism) or single-electron reduction of quinone by heme bL (semireverse mechanism). It is hotly debated which mechanism plays a major role in the overall production of superoxide as experimental data supporting either reaction exist. To evaluate a contribution of each of the mechanisms we first measured superoxide production under a broad range of conditions using the mutants of cytochrome bc1 that severely impeded the oxidation of FeS by cytochrome c1, changed density of FeS around Qo by interfering with its movement, or combined these two effects together. We then compared the amount of generated superoxide with mathematical models describing either semiforward or semireverse mechanism framed within a scheme assuming competition between the internal reactions at Qo and the leakage of electrons on oxygen. We found that only the model of semireverse mechanism correctly reproduced the experimentally measured decrease in ROS for the FeS motion mutants and increase in ROS for the mutants with oxidation of FeS impaired. This strongly suggests that this mechanism dominates in setting steady-state levels of SQo that present a risk of generation of superoxide by cytochrome bc1. Isolation of this reaction sequence from multiplicity of possible reactions at Qo helps to better understand conditions under which complex III might contribute to ROS generation in vivo.  相似文献   

19.
Frederik A.J. Rotsaert 《BBA》2008,1777(2):211-219
We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enzymes from the three species, amino acid sequence differences create sufficient structural differences so that there are striking differences in the inhibitors binding to the three enzymes. Antimycin is the most tightly bound of the three inhibitors, and binds stoichiometrically to the isolated enzymes from all three species under the cytochrome c reductase assay conditions. Ilicicolin H also binds stoichiometrically to the yeast enzyme, but binds approximately 2 orders of magnitude less tightly to the bovine enzyme and is essentially non-inhibitory to the Paracoccus enzyme. Funiculosin on the other hand inhibits the yeast and bovine enzymes similarly, with IC50 ∼ 10 nM, while the IC50 for the Paracoccus enzyme is more than 10-fold higher. Similar differences in inhibitor efficacy were noted in bc1 complexes from yeast mutants with single amino acid substitutions at the center N site, although the binding affinity of quinone and quinol substrates were not perturbed to a degree that impaired catalytic function in the variant enzymes. These results reveal a high degree of specificity in the determinants of ligand-binding at center N, accompanied by sufficient structural plasticity for substrate binding as to not compromise center N function. The results also demonstrate that, in principle, it should be possible to design novel inhibitors targeted toward center N of the bc1 complex with appropriate species selectivity to allow their use as drugs against pathogenic fungi and parasites.  相似文献   

20.
Redox transients of chlorophyll P700, monitored as absorbance changes ΔA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII + PSI− exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET). Pre-excitation with one or more 10 s FR pulses creates conditions for induction of linear electron transport (LET). These converse conditions give rise to totally different, but reproducible responses of P700 oxidation. System analyses of these responses were made based on quantitative solutions of the rate equations dictated by the associated reaction scheme for each of the relevant conditions. These provide the mathematical elements of the P700 induction algorithm (PIA) with which the distinguishable components of the P700+ response can be resolved and interpreted. It enables amongst others the interpretation and understanding of the characteristic kinetic profile of the P700+ response in intact leaves upon 10 s illumination with far-red light under the promotive condition for CET. The system analysis provides evidence that this unique kinetic pattern with a non-responsive delay followed by a steep S-shaped signal increase is caused by a photoelectrochemically controlled suppression of the electron transport from Fd to the PQ-reducing Qr site of the cytb6f complex in the cyclic pathway. The photoelectrochemical control is exerted by the PSI-powered proton pump associated with CET. It shows strong similarities with the photoelectrochemical control of LET at the acceptor side of PSII which is reflected by release of photoelectrochemical quenching of chlorophyll a fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号