首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All nitrogen-fixing bacteroids within legume root nodule cellsare surrounded by a host-derived peribacteroid membrane. Componentsof this membrane are supplied directly by the ER and Golgi ofthe host cell. The peribacteroid space lies between the peribacteroidand bacteroid membranes and contains several activities typicallyfound in vacuoles, namely; protease, acid trehalase, alpha-mannosidaseisoenzyme II and protein protease inhibitor. Thus bacteroidsinhabit an environment which fulfils the definition of a lysosome.Since the endosymbiotic organelles are morphologically differentfrom the lytic compartment normally present in a root cortexcell (the central vacuole), it is proposed that they representorgan-specific modifications of lysosomes, analogous to theprotein bodies of seeds. Perisymbiontic membranes are features common to all known plantendosymbioses (involving rhizobia, cyanobacteria, actinomycetes,vesicular-arbuscular mycorrhiza etc.) and the implications ofthis lead to the hypothesis that in all these cases the endosymbiontis compartmentalized within a specialized host lysosome. Key words: Actinomycetes, cyanobacteria, fixed nitrogen, peri-bacteroid/symbiont membrane/space, protein bodies, vesiculararbuscular mycorrhiza  相似文献   

2.
3.
Root nodules were harvested from chamber-grown soybean (Glycine max L. Merrill cv Woodworth) plants throughout development. Apparent nitrogenase activity (acetylene reduction) peaked before seeds began to develop, but a significant amount of activity remained as the seeds matured. Nodule senescence was defined as the period in which residual nitrogenase activity was lost. During this time, soluble protein and leghemoglobin levels in the host cell cytosol decreased, and proteolytic activity against azocasein increased. Degradative changes were not detected in bacteroids during nodule senescence. Total soluble bacteroid protein per gram of nodule remained constant, and an increase in proteolytic activity in bacteroid extracts was not observed. These results are consistent with the view that soybean nodule bacteroids are capable of redifferentiation into free-living bacteria upon deterioration of the legume-rhizobia symbiosis.  相似文献   

4.
In most studies concerning legume root nodules, the question to what extent the nodule-borne bacteroids survive nodule senescence has not been properly addressed. At present, there is no "model system" to study these aspects in detail. Such a system with Lotus japonicus and the broad host range Rhizobium sp. NGR234 has been developed. L. japonicus L. cv. Gifu was inoculated with Rhizobium sp. NGR234 and grown over a 12 week time period. The first nodules could be harvested after 3 weeks. Nodulation reached a plateau after 11 weeks with a mean of 64 nodules having a biomass of nearly 100 mg FW per plant. Nodules were harvested and homogenized at different stages of plant development. Microscopic inspection of the extracts revealed that, typically, nodules contained c. 15x10(9) bacteroids g(-1) FW, and that about 60% of the bacteroids were viable as judged by vital staining. When aliquots of the extracts were plated on selective media, a substantial number of "colony-forming units" was observed in all cases, indicating that a considerable fraction of the bacteroids had the potential to redifferentiate into growing bacteria. In nodules from the early developmental stages, the fraction of total bacteroids yielding CFUs amounted to about 20%, or one-third of the bacteroids judged to be viable after extraction, and it increased slightly when the plants started to flower. In order to see how nodule senescence affected the survival and redifferentiation potential of bacteroids, some plants were placed in the dark for 1 week. This led to typical symptoms of senescence in the nodules such as an almost complete loss of nitrogenase activity and a considerable decrease in soluble proteins. However, surprisingly, the number of total and viable bacteroids g(-1) nodule FW remained virtually constant, and the fraction of total bacteroids yielding CFUs did not decrease but significantly increased up to 75% of the bacteroids judged to be viable after extraction. This result indicates that during nodule senescence bacteroids might be induced to redifferentiate into the state of free-living, growing bacteria.  相似文献   

5.
The functional life of the flower is terminated by senescence and/or abscission. Multiple processes contribute to produce the visible signs of petal wilting and inrolling that typify senescence, but one of the most important is that of protein degradation and remobilization. This is mediated in many species through protein ubiquitination and the action of specific protease enzymes. This paper reports the changes in protein and protease activity during development and senescence of Alstroemeria flowers, a Liliaceous species that shows very little sensitivity to ethylene during senescence and which shows perianth abscission 8-10 d after flower opening. Partial cDNAs of ubiquitin (ALSUQ1) and a putative cysteine protease (ALSCYP1) were cloned from Alstroemeria using degenerate PCR primers and the expression pattern of these genes was determined semi-quantitatively by RT-PCR. While the levels of ALSUQ1 only fluctuated slightly during floral development and senescence, there was a dramatic increase in the expression of ALSCYP1 indicating that this gene may encode an important enzyme for the proteolytic process in this species. Three papain class cysteine protease enzymes showing different patterns of activity during flower development were identified on zymograms, one of which showed a similar expression pattern to the cysteine protease cDNA.  相似文献   

6.
Nitrogen-fixing symbiosis of legume plants with Rhizobium bacteria is established through complex interactions between two symbiotic partners. Similar to the mutual recognition and interactions at the initial stages of symbiosis, nitrogen fixation activity of rhizobia inside root nodules of the host legume is also controlled by specific interactions during later stages of nodule development. We isolated a novel Fix(-) mutant, ineffective greenish nodules 1 (ign1), of Lotus japonicus, which forms apparently normal nodules containing endosymbiotic bacteria, but does not develop nitrogen fixation activity. Map-based cloning of the mutated gene allowed us to identify the IGN1 gene, which encodes a novel ankyrin-repeat protein with transmembrane regions. IGN1 expression was detected in all organs of L. japonicus and not enhanced in the nodulation process. Immunoanalysis, together with expression analysis of a green fluorescent protein-IGN1 fusion construct, demonstrated localization of the IGN1 protein in the plasma membrane. The ign1 nodules showed extremely rapid premature senescence. Irregularly enlarged symbiosomes with multiple bacteroids were observed at early stages (8-9 d post inoculation) of nodule formation, followed by disruption of the symbiosomes and disintegration of nodule infected cell cytoplasm with aggregation of the bacteroids. Although the exact biochemical functions of the IGN1 gene are still to be elucidated, these results indicate that IGN1 is required for differentiation and/or persistence of bacteroids and symbiosomes, thus being essential for functional symbiosis.  相似文献   

7.
Photosynthate availability directly controls the maturation, senescence and distribution of bacteroids (inoculum Rhizobium meliloti 102 F28) in alfalfa ( Medicago saliva L. cv. Buffalo) nodules. Mature, dinitrogen-fixing bacteroids were located principally in the middle section (region) of 6- to 8-week-old nodules in light-grown alfalfa plants. Upon dark treatment of the plants, bacteroids in the middle region of a nodule were induced to senescence while those in the tip region began to mature faster. Senescence and deterioration of bacteroids in the basal region of a nodule also were more advanced in the dark-treated plants. Sugar supplied exogenously during the dark period retarded the senescence process. Exposure of the dark-treated plants to light partially restored nitrogenase activity. The distribution of bacteroids in the rejuvenated nodules was similar to that of the light-grown plants.  相似文献   

8.
Nitrogen-fixing bacteroids are degraded during nodule senescence. This is in contrast to recent implications that viable bacteroids can be released into soil from legume nodules. Rhizobia originating from persistent infection threads in senescing nodule plant cells seem to be the source of viable cells required for perpetuation of the Rhizobium spp. population in the soil. Our conclusions were derived from electron microscopic examination of stages of development and senescence of alfalfa root nodules.  相似文献   

9.
Histo- and cytochemical techniques were used to study the DNA replication and fragmentation patterns in bacteroids formed by Mesorhizobium huakuii subsp. rengei in nodules of Astragalus sinicus. DNA replication was detected by the incorporation of 5-bromo deoxy-uridine. Signals denoting DNA synthesis were observed in plant nuclei within the nodule meristem and in bacteroids near the meristem. The TUNEL (TdT-mediated dUTP nick-end labeling) assay was used to measure DNA fragmentation. In nutrient-depleted 1-mpi (month(s) post inoculation) nodule sections, some bacteroids were in vacuoles, and DNA fragmentation signals were observed only in such bacteroids. In contrast, 1-mpi nodule sections without nutrient depletion showed neither bacteroid localization in vacuoles nor DNA fragmentation signals. The bacteroid translocation into vacuoles upon nutrient starvation might results from autophagy of the plant. In 2-mpi nodule sections, bacteroids with DNA fragmentation signals appeared within the cytoplasm of some nodule cells in the senescence zone.  相似文献   

10.
Root nodule senescence induced by nitrate and ammonium in Pisum sativum L. was defined by determining nitrogenase activity and leghemoglobin content with the acetylene reduction and pyridine hemochrome assays. Root systems supplied with 100 mm KNO(3) or 100 mm NH(4)Cl exhibited a decrease in nitrogenase activity followed by a decline in leghemoglobin content. Increasing the CO(2) concentration from 0.000320 atm to 0.00120 atm had no effect on the time course of root nodule senescence when 20 mm KNO(3) was supplied to the roots; in vitro nitrate reductase activity was detected in leaves and roots, but not bacteroids. Nitrate appeared in leaves, roots, and the nodule cytosol fraction but not bacteroids when 20 mm KNO(3) was supplied to roots. When nitrate entered through the shoots, however, no root nodule senescence was observed, and no nitrate was detected in root or nodule cytosol fractions although nitrate and nitrate reductase were found in leaves. The results suggest that nitrate does not induce root nodule senescence through competition between nitrate reductase and nitrogenase for products of photosynthesis.  相似文献   

11.
12.
13.
Wong PP  Evans HJ 《Plant physiology》1971,47(6):750-755
Soybean (Glycine max) nodule bacteroids contain high concentrations of poly-β-hydroxybutyrate and possess a depolymerase system that catalyzes the hydrolysis of the polymer. Changes in poly-β-hydroxybutyrate content and in activities of nitrogenase, β-hydroxybutyrate dehydrogenase, and isocitrate lyase in nodule bacteroids were investigated under conditions in which the supply of carbohydrate from the soybean plants was interrupted. The poly-β-hydroxybutyrate content of bacteroids did not decrease appreciably until the carbohydrate supply from the host plants was limited by incubation of excised nodules, incubation of plants in the dark, or by senescence of the host plant. Isocitrate lyase activity in bacteroids was not detected until poly-β-hydroxybutyrate utilization appeared to begin. The presence of a supply of poly-β-hydroxybutyrate in nodule bacteroids was not sufficient for maintenance of high nitrogenase activity under conditions of limited carbohydrate supply from the host plant. An unusually high activity of β-hydroxybutyrate dehydrogenase was observed in bacteroid extracts but no significant change in the activity of this enzyme was observed as a result of apparent utilization of poly-β-hydroxybutyrate by nodule bacteroids.  相似文献   

14.
PHB颗粒在红豆草根瘤细菌发育中的动态变化   总被引:4,自引:1,他引:4  
红豆草根瘤胞间隙和侵入线中另有个别细菌含有PHB颗粒,而且数量很少,一个细菌通常仅有一个。随着细菌被从侵入线中释放到寄主细胞中,这些PHB颗粒立即消失。幼龄细菌不含PHB颗粒,成熟细菌一般也不含这种内含物。当细菌衰老时,它们又再度出现,并大量增加,而后很快减少,直至完全消失。从未发现这种颗粒存在于解体细菌中,尽管它们处于各种不同的解体状态。PHB颗粒在细菌发育中的变化表明,它的多少不仅与根瘤细菌发育密切有关,而且也受制于根瘤品种。  相似文献   

15.
Summary A series of investigations were conducted with the objective of elucidating natural pathways of electron transport from respiratory processes to the site of N2 fixation in nodule bacteroids. A survey of dehydrogenase activities in a crude extract of soybean nodule bacteroids revealed relatively high activities of NAD-specific β-hydroxybutyrate and glyceraldehyde-3-phosphate dehydrogenases. Moderate activities of NADP-specific isocitrate and glucose-6-phosphate dehydrogenases were observed. By use of the ATP-dependent acetylene reduction reaction catalyzed by soybean bacteroid nitrogenase, and enzymes and cofactors from bacteroids and other sources, the following sequences of electron transport to bacteroid nitrogenase were demonstrated: (1) H2 to bacteroid nitrogenase in presence of a nitrogenase-free extract ofC. pasteurianum; (2) β-hydroxybutyrate to bacteroid nitrogenase in a reaction containing β-hydroxybutyrate dehydrogenase, NADH dehydrogenase, NAD and benzyl viologen; (3) β-hydroxybutyrate dehydrogenase, to nitrogenase in reaction containing NADH dehydrogenase, NAD and either FMN or FAD; (4) light-dependent transfer of electrons from ascorbate to bacteroid nitrogenase in a reaction containing photosystem I from spinach chloroplasts, 2,6-dichlorophenolindophenol, and either azotoflavin from Azotobacter or non-heme iron protein from bacteroids; (5) glucose-6-phosphate to bacteroid nitrogenase in a system that included glucose-6-phosphate dehydrogenase, NADP, NADP-ferredoxin reductase from spinach, azotoflavin from Azotobacter and bacteroid non-heme iron protein. The electron transport factors, azotoflavin and bacteroid non-heme iron protein, failed to function in the transfer of electrons from an NADH-generating system to bacteroid nitrogenase. When FMN or FAD were added to systems containing azotoflavin and bacteroid non-heme iron protein, electrons apparently were transferred to the flavin-nucleotides and then nitrogenase without involvement of azotoflavin and bacteroid non-heme iron protein. Evidence is available indicating that nodule bacteroids contain flavoproteins analogous to Azotobacter, azotoflavin, and spinach ferredoxin-NADP reductase. It is concluded that physiologically important systems involved in transport of electrons from dehydrogenases to nitrogenase in bacteroids very likely will include relatively specific electron transport proteins such as bacteroid non-heme iron protein and a flavoprotein from bacteroids that is analogous to azotoflavin.  相似文献   

16.
Balestrasse  K.B.  Gallego  S.M.  Tomaro  M.L. 《Plant and Soil》2004,262(1-2):373-381
The relationship between cadmium-induced oxidative stress and nodule senescence in soybean was investigated at two different concentrations of cadmium ions (50 and 200 μM), in solution culture. High cadmium concentration (200 μM) resulted in oxidative stress, which was indicated by an increase in thiobarbituric acid reactive substances content and a decrease in leghemoglobin levels. Consequently, nitrogenase activity was decreased, and increases in iron and ferritin levels were obtained. Senescent parameters such as ethylene production, increased levels of ammonium and an increase in protease activity were simultaneously observed. Glutamate dehydrogenase activity was also increased. Peroxidase activity decreased at the higher cadmium concentration while the lower cadmium treatment produced changes in peroxidase isoforms, compared to control nodules. Ultrastructural investigation of the nodules showed alterations with a reduction of both bacteroids number per symbiosome and the effective area for N2-fixation. These results strongly suggest that, at least at the higher concentration, cadmium induces nodule senescence in soybean plants.  相似文献   

17.
Addition of NO3 rapidly induced senescence of root nodules in alfalfa ( Medicago sativa L. cv. Aragon). Loss of nodule dry matter began at the lowest NO3 concentration (10 m M ) but degradation of bacteroid proteins was only detected when nodules were supplied with NO3 concentrations above 20 m M .
Bacteroids from Rhizobium meliloti contained high specific activities of nitrate reductase (NR) and nitrite reductase (NiR). Both enzymes were presumably substrate-induced although substantial enzyme activities were present in the absence of NO3 Typical specific activities for soluble NR and NiR of bacteroids under NO3 free conditions were 1.2 and 1.4 μmol (mg protein)−1h−1, respectively. In the presence of NO3, the specific activity of NR was considerably greater than that of NiR, thus causing NO2 accumulation in bacteroids. Nitrite levels in the bacteroids were linearly correlated with specific activities of NR and NiR, indicating that NO2 is formed by bacteroid NR and that this NO2 in turn, induces bacteroid NiR. Accumulation of NO2 within bacteroids also indicates that NO2 inhibits nodule activity after feeding plants with NO3  相似文献   

18.
The nitrogenase activity of root nodules from Sesbania cannabina plants treated with Na2S2O4, DTT and trypsin was increased by 108%–114%, 106%–117% and 103%–119%, respectively. EM observation showed that the density of ATP-hydrolase as the marker of lead phosphate particles which were distributed on the peribacteroid membrane was much more significant than that of the control, but the bacteroids in peribacteroid membrane did not have ATP-hydrolase particles present. Dark treatment of the same age plants accelerated the nodule senescence and the ATP-hydrolase particles most densified on the peribacteroid membrane of the nodules, meanwhile, dense ATP-hydrolase particles also appeared in a number of degenerative bacteroids. This again confirms the conformation change of ATP-ase in bacteroids from ATP synthetase to ATP-hydrolase and its relation to nitrogen fixation with the senescence of nodules. The comparison of ATP-hydrolase particle density on the peribacteroid membrane of the nodule cells with different treatmemts are carried out and the role of the ATP-hydrolase on the peribacteroid membrane in substance transportation are discussed.  相似文献   

19.
20.
根瘤菌在根瘤宿主细胞内有两种形式:一种为拟菌体、被宿主细胞来源的财膜包裹;另一种为自由生活的营养细胞。前者色大多数,后者只有少数。随着根瘤的衰老,其命运是:拟菌体及其宿主细胞同时衰老以致最终解体,拟菌体不能再入土壤复生;以自由生活的营养细胞形式存在的细菌,不随其宿主细胞的解体而亡,可回复到土壤,一方面在豆科植物和土壤之间循环,一方面维持根瘤菌在土壤中天然的群体生态平衡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号