首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ultrastructure of coronet cells of the saccus vasculosus has been studied in specimens of Anguilla anguilla (L.) at different stages of its life cycle. At all the stages observed coronet cells are composed of a basal and an apical part, the latter bearing globules with primary vesicles. In the larva (a marine form) and in the fully metamorphosed small eel at the time of entry into freshwater the narrow lumen and the vesicles within the apical globules are filled with electron-dense material. In forms in which adaptation to freshwater has occurred, the saccus lumen appears expanded, the apical globules are better developed, and the electron-dense material has disappeared. It is suggested that the two situations observed represent different functional states of the organ, in relation to different conditions of environmental salinity.The authors gratefully acknowledge the contribution of Dr. G. Andreoli, of the University of Parma, who provided the Atlantic larvae for this study.  相似文献   

2.
The anterior end of the miracidium of Fasciola hepatica contains a large flask-shaped apical gland and four unicellular lateral glands, all of which have ducts which pass to the tip of the apical papilla. These glands appear to be involved in penetration of the larva into the snail host. The apical gland secretes as the miracidium proves the epidermis of the host before attachment. It seems likely that its secretion is a chemical which lyses the epidermal cells. The lateral glands are PAS-positive and may contain a neutral mucopolysaccharide. They also secrete as the miracidium probes the snail and a layer of PAS-positive material may be seen at the leading edge of the apical papilla as the larva penetrates into the host. Both the apical gland and the lateral glands may be visible in the sporocyst for several days after penetration.  相似文献   

3.
A fate map has been constructed for Phoronis vancouverensis. The animal pole of the egg gives rise to the apical plate in the hood of the actinotroch larva. The vegetal pole of the egg marks the site of gastrulation. During the initiation of gastrulation the cells of the animal pole of the embryo are directly opposite those at the vegetal pole of the embryo. The plane of the first cleavage always goes through the animal-vegetal pole of the egg. In about 70% of the cases the plane of the first cleavage is perpendicular to the future anterior-posterior axis of the actinotroch larva; in the remaining cases the plane of the first cleavage is either oblique with reference to, or occurs along, the future anterior-posterior axis of the larva. Following gastrulation catecholamine-containing cells first make their appearance in the apical plate and gut cells first produce esterase. The timing of regional specification in these embryos has been examined by isolating animal or vegetal, anterior or posterior, or lateral regions at different time periods between the initiation of cleavage and gastrulation and examining their ability to differentiate. Animal halves isolated from early cleavage through late blastula stages do not gastrulate and do not form catecholamine-containing cells. When animal halves are isolated with endoderm during gastrulation, they differentiate catecholamine-containing cells. Vegetal halves isolated at the 8- to 16-cell stage gastrulate and form normal actinotroch larvae with esterase-positive gut and catecholamine-containing apical plate cells. When this same region is isolated at blastula stages it does not gastrulate and does not differentiate these cell types. Vegetal halves isolated during gastrulation subsequently form esterase-positive gut cells, but they do not form catecholamine-containing apical plate cells. When presumptive anterior, posterior, or lateral halves are isolated from early cleavage through blastula stages, each half forms a normal actinotroch larva. Lateral halves isolated during gastrulation also form normal larvae. Anterior halves isolated during late gastrulation differentiate only the anterior end of the actinotroch larva. These isolates have a hood with catecholamine-containing apical plate cells and the first part of an esterase-positive gut but lack the anlagen of the intestine and protonephridia. Posterior halves isolated during late gastrulation differentiate only the posterior end of the actinotroch which lacks a hood with catecholamine-containing cells but has an esterase-positive gut, protonephridia, and the anlagen of the intestine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Fate maps have been constructed for embryos of Hemithiris and Terebratulina, representatives of two orders in the class Rhynchonellata that have been separated since the middle Ordovician. These fate maps are identical. The animal region of the egg forms the ectodermal covering of the apical lobe and the vegetal region is the site of gastrulation; the vegetal region forms the ectoderm of the ventral and posterior regions of the larva, endoderm and mesoderm. The cells that make up the animal region shift 90 degrees with respect to the vegetal pole during gastrulation. The timing and mode of regional specification in these two species are also identical. In each case, the animal region of the unfertilized egg has the intrinsic ability to form apical lobe ectoderm, while the vegetal region has the ability to form a normal larva. During embryogenesis, the vegetal region interacts with the animal region to suppress apical tuft differentiation in the apical lobe and to promote mantle lobe ectodermal differentiation, while the ability of the vegetal half to regulate by forming apical lobe structures is lost. The plane of bilateral symmetry of the larva begins to be set up between the late blastula and early gastrula stage. The fate maps and the processes of regional specification are compared in the four subphyla that make up the Brachiopoda and used to test a developmental model that provides an explanation for the variety of different body plans generated during the Cambrian.  相似文献   

5.
Echinoderm larvae share numerous features of neuroanatomy. However, there are substantial differences in specific aspects of neural structure and ontogeny between the dipleurula-like larvae of asteroids and the pluteus larvae of echinoids. To help identify apomorphic features, we have examined the ontogeny of the dipleurula-like auricularia larva of the sea cucumber, Holothuria atra. Neural precursors arise in the apical ectoderm of gastrulae and appear to originate in bilateral clusters of cells. The cells differentiate without extensive migration, and they align with the developing ciliary bands and begin neurogenesis. Neurites project along the ciliary bands and do not appear to extend beneath either the oral or aboral epidermis. Apical serotonergic cells are associated with the preoral loops of the ciliary bands and do not form a substantial commissure. Paired, tripartite connectives form on either side of the larval mouth that connect the pre-oral, post-oral, and lateral ciliary bands. Holothurian larvae share with hemichordates and bipinnariae a similar organization of the apical organ, suggesting that the more highly structured apical organ of the pluteus is a derived feature. However, the auricularia larva shares with the pluteus larva of echinoids several features of neural ontogeny. Both have a bilateral origin of neural precursors in ectoderm adjacent to presumptive ciliary bands, and the presumptive neurons move only a few cell diameters before undergoing neurogenesis. The development of the holothurian nervous systems suggests that the extensive migration of neural precursors in asteroids is a derived feature. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The larva of Loxosoma pectinaricola Franzén has been studied using scanning and transmission electron microscopy. The embryo develops surrounded by an egg envelope attached to the brood chamber. The newly released larva measures about 100 μm in length and is characterized by a prominent apical organ, stalked vesicles, paired lateral sense organs and a prototroch. The apical organ consists of at least four cell types: (1, 2) two types of ciliated cells, (3) vacuolated cells and (4) myoepithelial cells. The apical organ and frontal ganglion are tightly juxtaposed in the upper tier of the episphere. The stalked vesicles each consisting of two cells are unique evaginations of the epidermis. There are about twenty stalked vesicles with a maximum diameter of about 20.0 μm. The ciliated, knob-shaped, paired lateral sense organs are situated fronto-laterally on the episphere. The prototroch is comprised of a row of contiguous prototroch cells each containing about eighteen long cilia. The apical organ, frontal ganglion and paired lateral sense organs are suggested to be sensory structures that play an important role in active locomotion, settlement site selection and metamorphosis.  相似文献   

7.
The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.  相似文献   

8.
The organization of the nervous system and the histology and ultrastructure of the apical disc and the pyriform organ have been investigated by serial sections with light and electron microscopy for the larva of the vesiculariid ctenostome bryozoan Bowerbankia gracilis Leidy 1855. The nervous system consists of four major internal components: (1) a median-anterior nerve nodule; (2) an equatorial, subcoronal nerve ring; (3) paired aboral nerve cords; (4) paired antero-lateral nerve tracts. The nervous system is associated with the ciliated larval surface at the apical disc, the pyriform organ, the corona and the intercoronal cells. The paired aboral nerve cords extend from the apical disc to the nerve nodule, which gives rise to the paired antero-lateral nerve tracts to the pyriform organ and to paired lateral tracts that form the equatorial nerve ring. Ultrastructural evidence is provided for the designation of primary sensory cells in the neural plate of the apical disc and in the juxtapapillary regions of the pyriform organ. Efferent synapses are described between the equatorial nerve ring and the overlying coronal cells, which constitute the primary locomotory organ of the larva. The repertoire of potential functions of the apical disc and pyriform organ are discussed. It is concluded that the apical disc and pyriform organ constitute larval sensory organs involved in orientation and substrate selection, respectively. Their association with the major effector organs of the larva (the corona and the musculature) via the nervous system supports this interpretation.  相似文献   

9.
Serial and interval electron micrograph series were used to examine the anterior part of the ciliary band system in the bipinnaria larva of Pisaster ochraceus and the auricularia larva of Stichopus californicus for evidence of ganglion‐like organization. The bipinnaria has paired concentrations of Multipolar with Apical Processes (MAP) cells in this region that correspond in position with previously identified clusters of serotonergic and peptidergic neurones. MAP cells located in the centre of the band have well‐developed apical processes, but no cilium. Those at the sides of the band have fewer processes, but some have recumbent cilia that extend under the glycocalyx, suggesting a sensory function. Comparable cell types are not found elsewhere in the band, a clear indication that the apical parts of the ciliary band system are organized in a distinctive fashion. Two neuronal cell types were identified in the apical region of the auricularia larva, a conventional bipolar neurone that corresponds with previously described serotonergic apical cells, and more numerous MAP cells for which there is no previous record and hence, no known transmitter. Previous immunocytochemical studies are summarized and re‐examined in the light of these results. Relevant evolutionary issues are also discussed, but the data fail to provide strong evidence either for or against Garstang’s hypothesis that the chordate brain and spinal cord derive from larval ciliary bands resembling those of modern echinoderms.  相似文献   

10.
11.
Nemerteans have been alleged to belong to a protostome clade called the Trochozoa that includes mollusks, annelids, sipunculids, echiurids, and kamptozoans and is characterized by, among other things, the trochophore larva. The trochophore possesses a prototroch, a preoral belt of specialized ciliary cells, derived from the trochoblast cells. Nemertea is the only trochozoan phylum for which presence of the trochophore larva possessing a prototroch had never been shown. However, so little is known about nemertean larval development that comparing it with development of other trochozoans is difficult. Development in the nemertean clade Pilidiophora is via a highly specialized planktonic larva, the pilidium, and most of the larval body is lost during a drastic metamorphosis. Other nemerteans (hoplonemerteans and palaeonemerteans) lack a pilidium, and their development is direct, forming either an encapsulated or planktonic "planuliform" larva, producing a juvenile without a dramatic change in body plan. We show that early in the development of a member of a basal nemertean assemblage, the palaeonemertean Carinoma tremaphoros, large squamous cells cover the entire larval surface except for the apical and posterior regions. Although apical and posterior cells continue to divide, the large surface cells cleavage arrest and form a contorted preoral belt. Based on its position, cell lineage, and fate, we suggest that this belt corresponds to the prototroch of other trochozoans. Lack of differential ciliation obscures the presence of the prototroch in Carinoma, but differentiation of the trochoblasts is clearly manifested in their permanent cleavage arrest and ultimate degenerative fate. Our results allow a meaningful comparison between the development of nemerteans and other trochozoans. We review previous hypotheses of the evolution of nemertean development and suggest that a trochophore-like larva is plesiomorphic for nemerteans while a pilidium type of development with drastic metamorphosis is derived.  相似文献   

12.
The epidermis of the doliolaria larva of the Florometra serratissima is differentiated into distinct structures including an apical organ, adhesive pit, ganglion, ciliary bands, nerve plexus, and vestibular invagination. All these structures possess unique cell-types, suggesting that they are functionally specialized in the larva, except the vestibular invagination that becomes the postmetamorphic stomodeum. The epidermis also contains yellow cells, amoeboid-like cells, and secretory cells. The enteric sac, hydrocoel, axocoel, and somatocoels have differentiated but are probably not functional in the doliolaria stage. Mesenchymal cells, around the enteric sac and coeloms, appear to be actively secreting the endoskeleton and connective tissue fibers. The nervous system is composed of a nerve plexus, ganglion, and sensory receptor cells in the apical organ. The apical organ is a larval specialization of the anterior end; the ganglion is located in the base of the epidermis at the anterior dorsal end of the larva. The nerve plexus underlies most of the epidermis, although it is more prominent in the anterior region. Here, processes from sensory receptor cells of the apical organ, as well as those from nerve cells, contribute to the plexus. These processes contain one or a combination of organelles including vesicles, vacuoles, microtubules, and mitochondria. The configuration of glyoxylic acid-induced fluorescence, revealing catecholamine activity, correlates to the apical organ, nerve cells, and nerve plexus. Morphological evidence suggests that the nervous system may function in initiation and control of settlement, attachment, and metamorphosis. The crinoid larval nervous system is discussed and compared to that found in other larval echinoderms.  相似文献   

13.
Abstract. Embryonic development from coeloblastula to fully developed larva was investigated in 8 Mediterranean homoscleromorph species: Oscarella lobularis, O. tuberculata, O. microlobata, O. imperialis, Plakina trilopha, P. jani, Corticium candelabrum , and Pseudocorticium jarrei. Morphogenesis of the larva is similar in all these species; however, cell proliferation is more active in species of Oscarella than in Plakina and C. candelabrum. The result of cell division is a wrinkled, flagellated larva, called a cinctoblastula. It is composed of a columnar epithelium of polarized, monoflagellated cells among which are scattered a few non-flagellated ovoid cells. The central cavity always contains symbiotic bacteria. Maternal cells are also present in O. lobularis, O. imperialis , and P. jarrei. In the fully developed larva, cell shape and dimensions are constant for each species. The cells of the anterior pole have large vacuoles with heterogeneous material; those of the postero-lateral zone have an intranuclear paracrystalline inclusion; and the flagellated cells of the posterior pole have large osmiophilic inclusions. Intercellular junctions join the apical parts of the cells, beneath which are other specialized cell junctions. A basement membrane underlying the flagellated cells lines the larval cavity. This is the first observation of a basement membrane in a poriferan larva. The basal apparatus of flagellated cells is characterized by an accessory centriole located exactly beneath the basal body. The single basal rootlet is cross striated. The presence of a basement membrane and a true epithelium in the larva of Homoscleromorpha—unique among poriferan clades and shared with Eumetazoa—suggests that Demospongiae could be paraphyletic.  相似文献   

14.
B.J. Crawford 《Tissue & cell》1983,15(6):993-1005
In clonal culture differentiated chick retinal pigmented epithelial (RPE) cells form a monolayer which shows little or no cellular division. The cells usually rest on a basal and reticular lamina and are polarized with their apical surface towards the medium. The apical surface is characterized by apical protrusions, an extensive apical web of microfilaments and junctional complexes which join the apical-lateral borders. A PA/S positive material with a felt-like appearance from the serum component of the medium coats the surfaces of the tissue culture plates. A similar material is found on any membrane filter which has been exposed to medium containing serum. When such a filter brought in contact with the upper surfaces of the RPE cells, the apical surface characteristics are lost, the cells often accumulate Alcian Blue positive material between the cells and the filter and secrete a reticular and a basal lamina, i.e. they establish a second basal surface. Once this has occurred, the cells appear to either detach from the plate and reverse their polarity, or undergo division forming two cell layers. In the latter case new apical surfaces are created between the cell layers but the cells appear to join to form circular structures rather than sheets. These results suggest that contact with this felt-like material initiates formation of a basal surface. They further suggest that where the apical surface has been converted to a basal one the cell attempts to restore the apical surface either by separating from the plate and reversing its polarity or by creating circular structures and developing new apices oriented toward the center of the circle.  相似文献   

15.
For the first time, the development of a cyclostome bryozoan has been studied with immunochemistry and confocal laser scanning microscopy, with emphasis on nerves and muscles. The larva is covered by multiciliated cells, which are latitudinally strongly elongated and show phalloidin-stained cell junctions. We hypothesize that these cells contract at metamorphosis and squeeze the apical invagination and the adhesive sac out. Ectodermal, longitudinal muscle cells extend from the cells of the inner, conical cuticularized part of the apical invagination to the lower part of the corona, around the adhesive sac pore. These muscles are retained in the ancestrula. Scattered monociliated nerve cells are interspersed between the coronal ciliary cells. An equatorial nerve in the larva disappears at metamorphosis. The central, conical part of the cuticle becomes the terminal membrane of the ancestrula, and the underlying ectodermal and mesodermal cell layers differentiate into the polypide bud, forming a deep narrow invagination, differentiating into vestibule–atrium, mouth ring and pharynx–stomach–rectum. Tentacles develop from the ring of cells around the mouth, and a small ganglion with four nerves innervating each of the tentacles develops at the anal side of the mouth. These new findings yield further support for previous homology statements of bryozoan larvae and development.  相似文献   

16.
Abstract. Although the internal phyletic relationships of Spiralia (and Lophotrochozoa) remain unresolved, recent progress has been made due to molecular phylogenetic analyses as well as developmental studies of crucial taxa such as Mollusca, Sipuncula, or Annelida. Despite this progress, the phylogenetic position of a number of phyla, such as Entoprocta, remains problematic, mainly due to their unique morphology, their aberrant mode of development, and their exclusion in most large-scale phylogenetic analyses. In order to extend the morphological dataset of this enigmatic taxon, we herein describe the anatomy of the serotonergic nervous system of the creeping-type larva of Loxosomella murmanica . The apical organ is very complex and comprises six to eight centrally positioned flask cells and eight bipolar peripheral cells. In addition, a prototroch nerve ring, an anterior nerve loop, a paired buccal nerve, and an oral nerve ring are found. Moreover, the larva of L. murmanica has one pair of pedal and one pair of lateral longitudinal nerve cords and thus expresses a tetraneurous condition. Several paired serotonergic perikarya, which form contact with the pedal nerve cords but not with the lateral ones, are found along the anterior–posterior axis. The combination of a complex larval serotonergic apical organ and (adult) tetraneury, comprising one pair of ventral and one pair of more dorsally situated lateral longitudinal nerve cords without ganglia, has so far only been reported for basal molluscs and may be diagnostic for a mollusc–entoproct clade. In addition, the larva of Loxosomella expresses a mosaic of certain neural features that are also found in other larval or adult Spiralia, e.g., a prototroch nerve ring, an anterior nerve loop, and a buccal nervous system.  相似文献   

17.
When an imaginal disc of a mature larva is implanted into a host larva of the same age, it undergoes metamorphosis with the host. On the basis of the results obtained from the transplanted whole disc and disc fragments, a fate map of the foreleg disc of Sarcophaga ruficornis has been constructed. The fate map of S. ruficornis presented by us is basically similar to that of Drosophila but anterior and posterior rows of bristles of femur, apical, preapical and one long bristle of tibia have been precisely localized.  相似文献   

18.
Summary The larval stage of Polypodium hydriforme is planuliform and parasitic inside the growing oocytes of acipenserid fishes. The larva has inverted germ layers and a special envelope, the trophamnion, surrounding it within the host oocyte. The trophamnion is a giant unicellular provisory structure derived from the second polar body and performing both protective and digestive functions, clearly a result of adaptation to parasitism. The trophamnion displays microvilli on its inner surface, and irregular protrusions anchoring it to the yolk on its outer surface. Its cytoplasm contains long nuclear fragments, ribosomes, mitochondria, microtubules, microfilaments, prominent Golgi bodies, primary lysosomes, and secondary lysosomes with partially digested inclusions.The cells of the larva proper are poorly differentiated. No muscular, glandular, neural, interstitial, or nematocyst-forming cells have been found. The entodermal (outer layer) cells bear flagella and contain rough endoplasmic reticulum; the ectodermal (inner layer) cells lack cilia and contain an apical layer of acid mucopolysaccharid granules. The cells of both layers contain mitochondria, microtubules, and Golgi bodies; their nuclei display large nucleoli with nucleolonema-like structure, decondensed chromatin, and some perichromatin granules. At their apical rims, the ectodermal cells form septate junctions; laterally, the cells of both layers form simple contacts and occasional interdigitations. The lateral surfaces of entodermal cells are strengthened by microtubules.  相似文献   

19.
Summary The ultrastructure of the apical plate of the free-swimming pilidium larva of Lineus bilineatus (Renier 1804) is described with particular reference to the multiciliated collar cells. In the multiciliary collar cells there are several, up to 12, cilia surrounded by a collar of about 20 microvilli extending from the cells' apical surface. The cilia have the typical 9+2 axoneme arrangement and are equipped with striated caudal rootlets extending from the basal bodies. No accessary centriole or rostral rootlet were observed. Microvilli surrounding the cilia are joined in a cylindrical manner by a mucus-like substance to form a collar. In comparison with many sensory receptor cells built on a collar cell plan the multiciliary collar cells of the pilidium larva apical plate are rather simple and unspecialized. In other pilidium larvae monociliated collar cells are found in the apical plate. The possible function and phylogenetic implications of multiciliated collar cells in Nemertini are briefly discussed.List of Abbreviations a axoneme - b basal body - c cilia or flagella - d desmosome - G Golgi apparatus - m mitochondria - mf microfilaments - mu mucus - mv microvilli - n nucleus - nt neurotubules - pm plasma membrane - r rootlet - ri ribosomes - v secretory vesicles  相似文献   

20.
The ultrastructure of the digestive tract of tornaria larva of enteropneusts was investigated. It showed that the digestive tract consists of three parts: esophagus, stomach, and intestine. The esophagus epithelium consists of two types of multiciliated epithelial cells and solitary muscle cells. Axonal tracts and neurons were found in the ventral wall of the esophagus. The cardiac sphincter contains an anterior band of strongly ciliated cells and a posterior band of cells with long vacuolized processes which partition the sphincter lumen. The stomach consists of three cell types: (1) cells with electron-opaque cytoplasm, bearing a fringed border on their apical sides; (2, 3) sparse cells with electron-light cytoplasm and different patterns of apical microvilli. Cells of the pyloric sphincter bear numerous cilia and almost no microvilli. The intestine consists of three parts. The anterior part is formed of multiciliated cells which bear the fringed border. The middle part consists of flattened cells bearing rare cilia and vast numbers of mace-like microvilli. The posterior part of the intestine is formed of cells bearing numerous cilia and few microvilli. Muscle cells were not found in either stomach or intestine epithelium. One noticed that the structure of the digestive tract of enteropneust tornaria larva differs from that of echinoid pluteus larva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号