首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Formation of pollen wall exine is preceded by the development of several transient layers of extracellular materials deposited on the surface of developing pollen grains. One such layer is primexine (PE), a thin, ephemeral structure that is present only for a short period of time and is difficult to visualize and study. Recent genetic studies suggested that PE is a key factor in the formation of exine, making it critical to understand its composition and the dynamics of its formation. In this study, we used high-pressure frozen/freeze-substituted samples of developing Arabidopsis (Arabidopsis thaliana) pollen for a detailed transmission electron microscopy analysis of the PE ultrastructure throughout the tetrad stage of pollen development. We also analyzed anthers from wild-type Arabidopsis and three mutants defective in PE formation by immunofluorescence, carefully tracing several carbohydrate epitopes in PE and nearby anther tissues during the tetrad and the early free-microspore stages. Our analyses revealed likely sites where these carbohydrates are produced and showed that the distribution of these carbohydrates in PE changes significantly during the tetrad stage. We also identified tools for staging tetrads and demonstrate that components of PE undergo changes resembling phase separation. Our results indicate that PE behaves like a much more dynamic structure than has been previously appreciated and clearly show that Arabidopsis PE creates a scaffolding pattern for formation of reticulate exine.

Transmission electron microscopy and immunofluorescence analyses of Arabidopsis primexine reveal dynamic changes in its structure and composition throughout the tetrad stage of pollen development.  相似文献   

2.
3.
4.
Jing B  Heng S  Tong D  Wan Z  Fu T  Tu J  Ma C  Yi B  Wen J  Shen J 《Journal of experimental botany》2012,63(3):1285-1295
Cytoplasmic male sterility (CMS) is a widespread phenomenon in higher plants, and several studies have established that this maternally inherited defect is often associated with a mitochondrial mutant. Approximately 10 chimeric genes have been identified as being associated with corresponding CMS systems in the family Brassicaceae, but there is little direct evidence that these genes cause male sterility. In this study, a novel chimeric gene (named orf288) was found to be located downstream of the atp6 gene and co-transcribed with this gene in the hau CMS sterile line. Western blotting analysis showed that this predicted open reading frame (ORF) was translated in the mitochondria of male-sterile plants. Furthermore, the growth of Escherichia coli was significantly repressed in the presence of ORF288, which indicated that this protein is toxic to the E. coli host cells. To confirm further the function of orf288 in male sterility, the gene was fused to a mitochondrial-targeting pre-sequence under the control of the Arabidopsis APETALA3 promoter and introduced into Arabidopsis thaliana. Almost 80% of transgenic plants with orf288 failed to develop anthers. It was also found that the independent expression of orf288 caused male sterility in transgenic plants, even without the transit pre-sequence. Furthermore, transient expression of orf288 and green fluorescent protein (GFP) as a fused protein in A. thaliana protoplasts showed that ORF288 was able to anchor to mitochondria even without the external mitochondrial-targeting peptide. These observations provide important evidence that orf288 is responsible for the male sterility of hau CMS in Brassica juncea.  相似文献   

5.

Background and Aims

Microsporogenesis in monocots is often characterized by successive cytokinesis with centrifugal cell plate formation. Pollen grains in monocots are predominantly monosulcate, but variation occurs, including the lack of apertures. The aperture pattern can be determined by microsporogenesis features such as the tetrad shape and the last sites of callose deposition among the microspores. Potamogeton belongs to the early divergent Potamogetonaceae and possesses inaperturate pollen, a type of pollen for which it has been suggested that there is a release of the constraint on tetrad shape. This study aimed to investigate the microsporogenesis and the ultrastructure of pollen wall in species of Potamogeton in order to better understand the relationship between microsporogenesis features and the inaperturate condition.

Methods

The microsporogenesis was investigated using both light and epifluorescence microscopy. The ultrastructure of the pollen grain was studied using transmission electron microscopy.

Key Results

The cytokinesis is successive and formation of the intersporal callose wall is achieved by centrifugal cell plates, as a one-step process. The microspore tetrads were tetragonal, decussate, T-shaped and linear, except in P. pusillus, which showed less variation. This species also showed a callose ring in the microsporocyte, and some rhomboidal tetrads. In the mature pollen, the thickening observed in a broad area of the intine was here interpreted as an artefact.

Conclusions

The data support the view that there is a correlation between the inaperturate pollen production and the release of constraint on tetrad shape. However, in P. pusillus the tetrad shape may be constrained by a callose ring. It is also suggested that the lack of apertures in the pollen of Potamogeton may be due to the lack of specific sites on which callose deposition is completed. Moreover, inaperturate pollen of Potamogeton would be better classified as omniaperturate.Key words: Alismatales, callose, microsporogenesis, pollen aperture, Potamogeton illinoensis, P. polygonus, P. pusillus, tetrad shape  相似文献   

6.
Pollen morphology can be useful in the determination of phylogeny and mating systems of plants. Pollen ovule ratios can give an indication of the mating system of plant species, and there are a number of theories as to reductions in response to pollination strategies. Pollen tetrad segregation occurs when a number of pollen grains within a tetrad abort; this process has evolved a number of times in the family Ericaceae. Pollen ovule ratios along with the total number of tetrads, number of viable grains and proportions of each of the tetrad types were investigated in six species of Acrotriche (Styphelioideae: Ericaceae). Pollen ovule ratios were used in comparison with related species to give indications of mating systems and to examine theories regarding reductions in pollen production. The study species can be arranged into distinct groupings based on the proportions of tetrad types that correlate with floral morphology and may be indicative of phylogentic associations.  相似文献   

7.
Summary From early prophase stage until probaculae formation within the tetrad stage considerable cytoplasmic changes occur. The changes merely concern the ribosome population, the plasma matrix and, the endomembrane system formed by endoplasmic reticulum, dictyosomes and dictyosome-vesicles.The ultrastructure and morphology of mitochondria and plastids remain fairly unchanged, apart from the mobilization of starch during primexine formation.During meiotic prophase there is an increase in ribosome number, accompanied by the presence of nucleoloids in the cytoplasm. Simultaneously the electron density of the cytoplasm strongly increases, indicating a fair increase in protein content. Nucleoloids are also observed in the cytoplasm after primexine formation, accompanied by localized accumulation of ribosomes. Up to the individualization of the microspores the dictyosomes are in an inactive state. After that, they become very active, especially during primexine formation when numerous large dictyosome-vesicles are present.The endoplasmic reticulum (ER), initially in a plate-like configuration, disappears from the cytoplasm during primexine formation. Abundant, smooth and tubular ER is present when probaculum formation starts.  相似文献   

8.
9.

Background and Aims

In flowering plants, microsporogenesis is accompanied by various types of cytoplasmic partitioning (cytokinesis). Patterns of male cytokinesis are suspected to play a role in the diversity of aperture patterns found in pollen grains of angiosperms. The relationships between intersporal wall formation, tetrad shape and pollen aperture pattern ontogeny are studied.

Methods

A comparative analysis of meiosis and aperture distribution was performed within tetrads in two triporate eudicot species with contrasting aperture arrangements within their tetrads [Epilobium roseum (Onagraceae) and Paranomus reflexus (Proteaceae)].

Key Results and Conclusions

Intersporal wall formation is a two-step process in both species. Cytokinesis is first achieved by the formation of naked centripetal cell plates. These naked cell plates are then covered by additional thick, localized callose deposits that differ in location between the two species. Apertures are finally formed in areas in which additional callose is deposited on the cell plates. The recorded variation in tetrad shape is correlated with variations in aperture pattern, demonstrating the role of cell partitioning in aperture pattern ontogeny.  相似文献   

10.
Recent work concerning the regulation of pollen and pollen tube development at the biochemical level in angiosperms has been reviewed, commencing with the microspore immediately after meiosis and terminating with the entry of the pollen tube into the embryo sac. Some of the topics that have been considered are, (1) the role of the tapetum in pollen development, (2) gene activity in the microspore and pollen grain prior to anthesis, (3) DNA synthesis in the microspore and pollen tube, (4) the types of RNA and protein synthesized in the pollen tube including the biochemistry of the vegetative and generative nuclei and finally, (5) the interactions between pollen and pistil after pollination.  相似文献   

11.
MAP kinase signaling during pollen development   总被引:1,自引:0,他引:1  
The stereotypical events of pollen grain maturation and its coordinated development with other flower tissues requires the interplay of different signalling pathways in order to ensure efficient fertilisation and, eventually, seed set. In recent years evidence has accumulated that members of the mitogen-activated protein kinase (MAP kinase) family are expressed in pollen and may function as regulators of both pollen development and germination. In this review we describe what is known about MAP kinases in pollen and discuss their possible function(s) in pollen biology. Received: 14 December 2000 / Accepted: 6 June 2001  相似文献   

12.
Aerobic fermentation during tobacco pollen development   总被引:1,自引:0,他引:1  
  相似文献   

13.
Summary The influence of the stage of pollen development and of the growth conditions of donor plants on the performance of cultures of isolated pollen fromNicotiana tabacum, var. Badischer Burley has been studied. The method described includes cold treatment (4–5 °C for 3 days) and a pre-culture of the anthers for 7 days at 24 °C before the pollen is isolated. With this system reproducible results were obtained with pollen at the early binucleate stage collected from plants 11–13 weeks old. Another prerequisite for reproducibility is that the donor plants must have been grown for eight weeks in soil with an additional supply of mineral salts. Furthermore, the production of haploids by these pollen cultures was strongly influenced by the photoperiodic and temperature regime experienced by the donor plants; it was best (0.07%) with pollen from short-day plants (8 hours light per day at 18 °C) and rather weak (0.015%) with pollen from long-day plants (16 hours light per day at 24 °C). In contrast to other reports, haploid production from anther cultures was not influenced by the photoperiod or temperature.Cytological studies undertaken at the end of the pre-culture period showed that there were no differences in the percentage of potential embryos for the stages of the late uninucleate, 1. pollen mitosis and early binucleate pollen of long-day plants (1.5%). This value was considerably higher with pollen from short-day plants (7–9%), indicating that short-day conditions at 18 °C of the donor plants are favourable for the induction of androgenesis. However, only the potential embryos formed by the pollen at the initial binucleate stage were able to continue androgenetic development after isolation.  相似文献   

14.
Mutant analysis represents one of the most reliable approaches to identifying genes involved in plant development. The screening of the Versailles collection of Arabidopsis thaliana T-DNA insertion transformants has allowed us to isolate different mutations affecting male gametophytic functions and viability. Among several mutated lines, five have been extensively studied at the genetic, molecular, and cytological levels. For each mutant, several generations of selfing and outcrossing have been carried out, leading to the conclusion that all these mutations are tagged and affect only the male gametophyte. However, only one out of the five mutations is completely penetrant. A variable number of T-DNA copies has integrated in the mutant lines, although all segregate at one mutated locus. Two mutants could be defined as "early mutants": the mutated genes are presumably expressed during pollen grain maturation and their alteration leads to the production of nonfunctional pollen grains. Two other mutants could be defined as "late mutant" since their pollen is able to germinate but pollen tube growth is highly disturbed. Screening for segregation ratio distortions followed by thorough genetic analysis proved to be a powerful tool for identifying gametophytic mutations of all phases of pollen development.  相似文献   

15.
Acclimation to high temperature during pollen development   总被引:1,自引:0,他引:1  
  相似文献   

16.
Brachypodium distachyon is a widely recognized model plant belonging to subfamily Pooideae with a sequenced genome. To gain a better understanding of the male reproductive development in B. distachyon we examined pollen morphology and cytochemical changes of microspore cytoplasm from pollen mother cell stage to mature pollen using light, fluorescent and scanning electron microscopy. Our results show that B. distachyon exhibits a typical monocot-type pollen ontogeny. Meiosis in the pollen mother cells is accomplished by successive cytokinesis generating isobilateral tetrads. Cytochemical examination indicated that microspore cytoplasm contains variable amounts of insoluble carbohydrates and proteins at different developmental stages. Deposition of starch in the cytoplasm of microspores starts at the bicellular stage and continues till the mature pollen stage. The formation of the exine wall progresses by the deposition of sporopollenin from the tapetum layer of the anther. The mature pollen is trinucleate, spheroidal in shape and possesses a single pore with an annulus and operculum. The exine pattern is smooth and of granular type.  相似文献   

17.
In contrast to sporophytic tissues, mature pollen of higher plants does not synthesize the typical set of heat-shock proteins (HSPs) in response to a marked temperature upshift. Immature grains, however, seem able to do so, at least partially. We investigated the characteristics of HSP synthesis throughout the male gametophytic phase in maize and compared gametophytic and sporophytic heat-shock responses. One-dimensional Sodium dodecyl sulfate-polyacryl-amide gel electrophoresis technique (SDS-PAGE) of newly synthesized proteins revealed that immature pollen synthesizes HSPs, some of which are not induced in sporophytic tissues. The heat-shock response appeared to be related to microgametophytic developmental stages. The strongest response was found in uninucleate microspores: at this stage, in addition to the sporophytic 102, 84, 72, and 18 kD HSPs, three other polypeptides of 74, 56, and 46 kD were observed. In the binucleate and trinucleate stages, only a reduced synthesis of few HSPs could be induced, and differences between genotypes were observed. In germinating pollen, HSP synthesis was not induced under a voriety of heat-stress conditions; however, the consti-tutive synthesis of two polypeptides of the same molecular weight, 72 and 64 kD, as two HSPs was observed. The biological significance of these results is discussed.  相似文献   

18.
Growth and development of conifer pollen tubes   总被引:1,自引:0,他引:1  
Conifer pollen tubes are an important but underused experimental system in plant biology. They represent a major evolutionary step in male gametophyte development as an intermediate form between the haustorial pollen tubes of cycads and Ginkgo and the structurally reduced and faster growing pollen tubes of flowering plants. Conifer pollen grains are available in large quantities, most can be stored for several years, and they grow very well in culture. The study of pollen tube growth and development furthers our understanding of conifer reproduction and contributes towards our ability to improve on their productivity. This review covers taxonomy and morphology to cell, developmental, and molecular biology. It explores recent advances in research on conifer pollen and pollen tubes in vivo, focusing on pollen wall structure, male gametophyte development within the pollen wall, pollination mechanisms, pollen tube growth and development, and programmed cell death. It also explores recent research in vitro, including the cellular mechanisms underlying pollen tube elongation, in vitro fertilization, genetic transformation and gene expression, and pine pollen tube proteomics. With the ongoing sequencing of the Pinus taeda genome in several labs, we expect the use of conifer pollen tubes as an experimental system to increase in the next decade.  相似文献   

19.
The spindles in generative cell divisions within the pollen tubes ofCalanthe andImpatiens were revealed by anti-α-tubulin immunofluorescence methods. They were peculiar configurations in which the metaphase chromosomes lay tandemly in some lines along the spindle axis and the sister chromosomes separated anti-parallelly by the spindle elongation during anaphase.  相似文献   

20.
采用染色体压片法系统地观察了华北落叶松Larix principis-rupprechtii小孢子母细胞(PMC)减数分裂的细胞学特征和花粉发育过程。结果表明:华北落叶松PMC减数分裂始于当年秋季,以弥散双线期的特殊状态休眠越冬,次年春天又重新恢复其后续的减数分裂过程。主要特点是在同一花药中,减数分裂不同步,且各阶段分裂速度较快,3天内全部停留在四分体阶段;二价体构型主要为两臂共发生过两次以上交换的环形二价体,少数细胞中偶见一臂发生交换的棒状二价体;其平均构型为10.62II 1.38II;中期II核分裂相既有平行式样,又有互为垂直式样,形成左右对称型和四面体型四分体,兼具单、双子叶植物四分体主要类型特点。四分体持续一周后,细胞壁开始溶解,4个小孢子分离并游离在药室中,成为独立的单核花粉。其后细胞核开始有丝分裂,最后形成由2个原叶细胞、1个管细胞、1个柄细胞和1个体细胞共5个细胞组成的成熟花粉。此外,还观察到成熟花粉当中有13.6%是由4个细胞组成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号