首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pollen wall ofStrelitzia reginae (Musaceae) consists of a nearly unsculptured, very thin, highly reduced, but coherent exine, and a thick intine (with an outer, channeled layer and an inner, largely homogeneous layer). After short, incomplete acetolysis the exine covers the remaining, severely shrinked protoplast as a folded, but unaltered “skin”, while the intine has totally disappeared. After extended acetolysis only the coherent, skin-like exine remains. Thus, the term “exine-less pollen” sometimes used for similar sporoderm structures in other genera ofZingiberales is misleading and should be substituted by the term “skin-like exine”. Surprisingly, the peculiar pollen wall ultrastructure ofStrelitzia and some otherZingiberales is very similar to that of some genera of theLaurales, an example for convergent evolution within the angiosperms.  相似文献   

2.
F. B. Sampson 《Grana》2013,52(5):257-265
Pollen morphology and ultrastructure of Laurelia novae-zelandiae A. Cunn., L. sempervirens (Ruiz et Pavón) Tulasne, Laureliopsis-philippiana (Looser) Schodde and Dryadodaphne trachyphloia Schodde are described. Laurelia, Laureliopsis and Dryadodaphne have medium-sized, isopolar, globose to globose-ellipsoidal pollen which is either dicolpate (Dryadodaphne, rarely in Laureliopsis) or meridionosulcate, with a median encircling aperture with two wider parts centered at the poles (Laurelia, most pollen of Laureliopsis). Exine is tectate-columellate with an uneven foot layer showing irregular discontinuities. A few tangentially-aligned lamellae show some resemblance to an endexine and in some sections there appears to be an intergradation between these lamellae and small tangentially flattened foot layer parts. The intine consists of an outer channelled zone, with radial (Laurelia sempervirens) or tangential (Dryadodaphne) alignment of channels and an inner intine of homogeneous appearance. The outer intine is thicker in apertural regions and the inner intine is thicker within the apertures of Laureliopsis and Dryadodaphne. The pollen grains of 6 of the 7 genera of Atherospermataceae are compared in tabular form. Although pollen grains show links with other Monimiaceae (sensu lato), it is sufficiently distinct to support the existence of the Atherospermataceae as a separate family. It is acknowledged that, on other grounds, a good case can be made for retention of the group as a subfamily within the Monimiaceae.  相似文献   

3.
Pollen of 110 species from 18 genera in thePortulacaceae has been examined by light and scanning electron microscopy, and a representative number by transmission electron microscopy. Three basic pollen types were found: 3-colpate with thick tectum and foot layer with prominent unbranched columellae and an extremely thin endexine; pantoporate with thick tectum and foot layer with branched columellae enclosing pores and an endexine that is one to two layers thick; pantocolpate with thin tectum and foot layer with broad, short unbranched columellae and an inconspicuous endexine. All pollen types, however, have a spinulose and tubuliferous/punctate ektexine. Also, all the genera except three,Calandrinia H.B.K.,Montia L. andTalinum Adanson are stenopalynous. There is, however, no absolute correlation between pollen morphology and geographical distribution, although both the major centre of palynological diversity and the majority of all species with tricolpate grains occur in South America.  相似文献   

4.
5.
The pollen morphology and ultrastructure of 20 species, representing eight genera of the Magnoliaceae are described based on observations with light, scanning and transmission electron microscopy. The family represents a homogeneous group from a pollen morphological point of view. The pollen grains are boat-shaped with a single elongate aperture on the distal face. The tectum is usually microperforate, rarely slightly or coarsely rugulose. Columellae are often irregular, but well-developed columellae do occur in some taxa. The endexine is distinct in 14 species, but difficult to discern in the genera Parakmeria, Kmeria and Tsoongiodendron. Within the aperture zone the exine elements are reduced to a thin foot layer. The intine has three layers with many vesicular-fibrillar components and tubular extensions in intine 1. The symmetry of the pollen grains, shape, type of aperture and ultrastructure of the intine show a remarkable uniformity in the family. Nevertheless there is variety in pollen size, ornamentation and the ultrastructure of the exine. The pollen of Magnoliaceae is an example of an early trend of specialization, and supports the view that Magnoliaceae are not one of the earliest lines in the phylogeny of flowering plants.  相似文献   

6.
The pollen wall ultrastructure of the primitive AngiospermLactoris fernandeziana Phil. (Lactoridaceae) is described. The monosulcate aperture, granular wall structure and sacci (all primitive features) suggest placement of this family in theMagnoliales. Pollen ofLactoris is compared to fossil dispersed pollen from the Lower and lower-Upper Cretaceous. The fossil pollen shares characteristics which are restricted to theLactoridaceae suggesting that this family was present during the early Cretaceous.  相似文献   

7.
The four genera investigated show solitary sulcate pollen grains. The structure and sculpture of the sporoderm is very similar inBocageopsis andUnonopsis, and supports the close relationship of both genera; their flower morphology also is very similar. In contrast, the sporoderm ofEphedranthus, and especially that ofMalmea, is different in some characters and suggests more remote relationships; this is also confirmed by differences in flower morphology. Within this group of genera a distinct exine progression can be recognized from non-columellate (Malmea) to granular (Unonopsis guatterioides), further to somewhat irregularly (Bocageopsis, someUnonopsis species), and finally to very regularly columellate (Ephedranthus). The sculpture of the tectum varies from a reticulum with large lumina (Malmea) to one with small performations (Ephedranthus). Within theAnnonaceae the genusMalmea is among the most primitive in respect to pollen structure. The sulcus of the four genera is very large and runs over 1/3 of the pollen grain. It is characterized by a reduction of the exine and a bulgy thickening of the intine.
  相似文献   

8.
Subtype PIII sieve-element plastids, anthocyanins, spinulose, perforate-tectate pollen grains and the specific seed-coat sculpturing found in twoMacarthuria species (M. australis, M. neocambrica) consolidate their placement withinMolluginaceae. The unique form of the sieve-element plastids, i.e. with cubic crystals and starch grains (PIIIc″fs), finds its closest counter-part inLimeum. The multiple intertwinement of different genera of theMolluginaceae with many other centrospermous families led to a consideration of their more central position withinCaryophyllales.  相似文献   

9.
10.

Background and Aims

The Arabidopsis thaliana pollen cell wall is a complex structure consisting of an outer sporopollenin framework and lipid-rich coat, as well as an inner cellulosic wall. Although mutant analysis has been a useful tool to study pollen cell walls, the ultrastructure of the arabidopsis anther has proved to be challenging to preserve for electron microscopy.

Methods

In this work, high-pressure freezing/freeze substitution and transmission electron microscopy were used to examine the sequence of developmental events in the anther that lead to sporopollenin deposition to form the exine and the dramatic differentiation and death of the tapetum, which produces the pollen coat.

Key Results

Cryo-fixation revealed a new view of the interplay between sporophytic anther tissues and gametophytic microspores over the course of pollen development, especially with respect to the intact microspore/pollen wall and the continuous tapetum epithelium. These data reveal the ultrastructure of tapetosomes and elaioplasts, highly specialized tapetum organelles that accumulate pollen coat components. The tapetum and middle layer of the anther also remain intact into the tricellular pollen and late uninucleate microspore stages, respectively.

Conclusions

This high-quality structural information, interpreted in the context of recent functional studies, provides the groundwork for future mutant studies where tapetum and microspore ultrastructure is assessed.  相似文献   

11.
Pollen morphology and sporoderm ultrastructure of modern Neurada procumbens L. and Grielum humifusum E.Mey. ex Harv. et Sond. were studied using light (LM) and electron (SEM and TEM) microscopy. Additionally late Holocene pollen of the Grielum-type was studied using LM. Systematic and ecological aspects have been discussed for the family Neuradaceae. The pollen grains of the studied species are characterized by similarities in size, shape, aperture type and differences in exine sculpture (reticulate semitectate exine in Neurada and finely reticulate to foveolate in Grielum) and sporoderm ultrastructure. The cavea in the exine is situated between the ectexine and endexine which are connected near the aperture region only. A combination of the palynological characters of the Neuradaceae (semitectate exine, rather loose columellae, interrupted foot layer, the cavea in the exine) increases the pollen plasticity, allowing considerable changes of the pollen grain volume but still remains insufficient to survive sharp fluctuations in hydration level.  相似文献   

12.
The genus Nothofagus is mainly distributed in South America and New Zealand. The present paper describes its pollen exine ultrastructure and compares the exine ultrastructure with that of the other genera of Fagaceae. The pollen grains were examined using ultrathin sectioning technique under transmission electron microscope. The study shows that the pollen exine ultrastructure of Nothofagus differs from that of the other genera of Fagaceae by its exine structure and thickness, type of aperture, and ornamentation. The pollen exine of Nothofagus is thin and possesses granular bacules, regular foot layer and tectum, spinulate ornamentation, and the endexine is usually visible at poral area, and 5~8 colpate. The pollen exine of the other genera of Fagaceae possesses entire bacules, irregular foot layer and tectum, granulate and tuberculate ornamentation, thicker endexine, and is 3-colporate ( 3-colpate or 3-colporoidate). The pollen exine ultrastructure of Nothofagus may belong to primitive type. The pollen exine ultrastructure data support Kuprianova’s opinion that Nothofagus should be separated from Fagaceae and established as a monogenetic family, i.e. Nothofa-gaceae.  相似文献   

13.
A survey of pollen morphology of 40 species representing eight genera of the primarily North American subtribe Microseridinae reveals seven of the eight genera to have caveate, echinolophate, tricolporate grains, Picrosia being the only taxon with echinate pollen. Sectioned grains reveal the exine to consist of an ektexine and endexine. The ektexine, composed of spines, columellae, and foot layer appears to be of two basic types, one with six or seven levels of horizontally anastomosing columellae which are reduced to a single columellar layer under the paraporal lacunae and the second, a bistratified ektexine not reduced to a single layer below the paraporal lacunae. Sectioned exines of Pyrrhopappus are unusual, having very large columellae fused to the foot layer below ridges and highly reduced columellae under lacunae. Endexine organization is similar in most of the genera. Exceptions to this are Pyrrhopappus and some species of Agoseris, which have an “endexine 2” layer. Subtribe Microseridinae is essentially stenopalynous. The pollen data support most of the relationships suggested by Stebbins in his classification. The genera Agoseris, Microseris, Nothocalais, and Phalacroseris seem to form a natural group while Krigia and Pyrrhopappus form another cohesive series. The position of Picrosia, as an advanced offshoot of Pyrrhopappus, is not supported by the pollen data.  相似文献   

14.
Long-term microbiological investigation of the pollen of silver birch (Betula pendula) in the Moscow and Moscow oblast areas revealed that almost one-third of the analyzed samples contained the fungus identified by morphological, cultural, and molecular genetic techniques as Quambalaria cyanescens (de Hoog & G.A. de Vries) Z.W. de Beer, Begerow & R. Bauer. This species was previously known mostly as a symbiont of tropical plants of the genera Eucalyptus and Corymbia and have not been isolated in Russia. We revealed a close association between Quambalaria cyanescens and silver birch. The micromycete was regularly detected in pollen samples, as well as on the inside and outside of the aments, and on the surface of leaves and branches. It was never isolated from other plant species in the investigated area. The data on the morphological and cultural characteristics of the fungus, its cell ultrastructure, and occurrence are presented, as well as the phylogenetic analysis of the isolated strains.  相似文献   

15.
16.
A fragmentary pollen organ with four to six microsporangia is discovered from the Middle Jurassic of the Irkutsk coal basin, Siberia. The in situ pollen grains are boat-shaped, monosulcate, and with a nearly psilate surface. The non-aperture ectexine is composed of a thick solid tectum, a thin infratectum, and a thin foot layer. The infratectum includes one row of small rare alveolae. The supposedly poorly preserved endexine is thin and grainy. The ectexine reduces greatly in the aperture area, where only homogeneous ectexinal patches are present over the endexine. The pollen grains under study resemble in their exine ultrastructure pollen grains of the modern Ginkgo biloba and pollen grains from dispersed seeds of a presumably ginkgoalean affinity from the Middle Jurassic of Uzbekistan. This suggests that the ginkgoalean exine ultrastructure of the modern type existed as early as the Middle Jurassic. The exine ultrastructure under study is also similar, though to lesser degree, to that of dispersed pollen grains of a presumed ginkgoalean affinity from the Cretaceous of the Russian Far East. The diversity of such a long-living group as ginkgoaleans is apparently reflected in the diversity of their exine ultrastructure. To the present knowledge, ginkgoalean pollen grains can be differentiated from similar boat-shaped monosulcate pollens by the following co-occurring characters: a thick homogeneous tectum, a thin infratectum with one row of structural elements, a thin foot layer, and an ectexine that is reduced in the aperture region to patches.  相似文献   

17.
A revision of the genus Dolichos in South Africa (Lesotho and Swaziland included) is presented. This legume genus, belonging to the bean tribe Phaseoleae, mainly has an African distribution, extending into Asia. In South Africa it is represented by nine species, two (D. sericeus and D. trilobus) of which extend into Tropical Africa. Dolichos is closely related to the genus Macrotyloma from which it can be distinguished by the short standard appendages, reticulate pollen and the generally purple flowers (standard appendages long, pollen tuberculate or spinulose and flowers yellow or orange in Macrotyloma). It also has affinities with the genera Dipogon and Lablab. The correct nomenclature, as well as complete synonymy, typification and distribution maps of all the species are provided.  相似文献   

18.
The diverse epidendroid orchid tribe Neottieae is characterized by multiple transitions between autotrophy and mycoheterotrophy, allogamous and autogamous mating systems, pollen released as tetrads or monads, and pollen exine tectate or semitectate. We use transmission and scanning electron microscopy on pollen of ten species of Neottieae to investigate whether the differences in pollen aggregation and exine micromorphology and ultrastructure reflect phylogenetic relationships, or whether this variation is subject to ecological constraints. Our results showed that differences in exine micromorphology are mostly concordant with phylogenetic relationships in Neottieae, i.e. an ascending tendency of pollen ornamentation from tectate (Cephalanthera) to semitectate (e.g. Neottia). In contrast, pollen aggregation, when plotted on the most recent phylogeny, shows repeated transitions between monads and tetrads that could be related to ecological constraints. Tetrads are present in species that are nectar rewarding, whereas monads are common in deceptive species. Cephalanthera is characterized by recalcitrant pollen, including the frequent occurrence of collapsed pollen. In this genus, the observed shifts from allogamous to autogamous or cleistogamous mating systems could help to reduce pollen damage caused by exposure to dry habitats.  相似文献   

19.
Pollen grain morphology, sculpturing, and wall ultrastructure are investigated in two species ofCoris (Primulaceae),C. monspeliensis L. andC. hispanica Lange. The study includes both acetolysed and unacetolysed pollen. No evidence of any major palynological difference is recorded between these two species, apart from a somewhat larger pollen inC. monspeliensis. However,Coris can be distinguished from the remaining members of thePrimulaceae by the conjunction of relatively large pollen grains, prominent margo, and particular tectal pattern causing a reticulate surface with minute luminal perforations decreasing towards the colpi. From both these distinctive features, and others typically primulaceous, some evolutionary considerations are inferred. Finally, the higher proportion of irregular grains inC. hispanica is interpreted in light of environmental stress.  相似文献   

20.
Morphology and exine ultrastructure of pollen grains of Triassic peltasperms have been studied for the first time. Pollen grains of Antevsia zeilleri from the Rhaetian of Germany are of the Cycadopites-type and monosulcate; the sculpturing is the same in the apertural and non-apertural areas. The proximal exine includes a row of lacunae covered by a solid, thick tectum and underlined by a foot layer. Pillars are hanging from the tectum between the lacunae. The exine is thinning to a homogeneous layer in the apertural region. The latter is bordered by thicker alveolate areas of the exine, in places resembling a saccus-like ultrastructure. The endexine includes white-line-centred lamellae. The exine ultrastructure is compared with that of pollen of Permian peltasperms. Although pollen types ascribed to Permian peltasperms are completely different in their general morphology, a transformation can be hypothesized by ultrastructural data from Permian Vesicaspora into Triassic Cycadopites extracted from pollen sacs of Antevsia. Comparison with Cycadopites of non-peltaspermalean (Ginkgoalean, Cycadophyte) and unknown affinities has been accomplished. The exine ultrastructure is distinctive enough to differentiate among peltaspermalean, cycadalean and bennettitalean Cycadopites; some ultrastructural features are shared with pollen of modern Ginkgo biloba. More ultrastructural data are needed as well as numerous sections of pollen grains are necessary to reveal original unchanged ultrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号