首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age-specific seasonal rhizome storage dynamics of a wetland stand of Phragmites australis (Cav.) Trin. ex Steud. in Japan, were investigated from April to October 2000. For each sampling date, above- and below-ground biomass and age-specific rhizome bulk density, ?rhiz were measured. Seven rhizome age classes were recognized, from <1 year to six years old, based on their position within the branching hierarchy as main criteria and rhizome color, condition of nodal sheaths and condition of the shoots attached to vertical rhizomes as secondary criteria. P. australis stand was moderately productive, having a net aerial and below-ground production of 1980 and 1240 g m?2, respectively, and a maximum mean shoot height of 2.33 ± 0.12 m. In spring, shoot growth started at the expense of rhizome reserves, decreasing the rhizome biomass as well as ?rhiz. Both parameters reached the seasonal minimum in May followed by a subsequent increase, indicating a translocation of reserves to rhizomes from shoots after they become self supporting. For each sampling date, ?rhiz increased with rhizome age. Given that the quantity of reserves remobilized by the rhizomes for spring shoot growth, as assessed by the drop in bulk density from April to May, were positively correlated (r = 0.97, P < 0.05) with rhizome age, it is proposed that for spring shoot formation older rhizomes remobilize stored reserves more actively than younger ones. Given that the accumulation of rhizome reserves (rise in bulk density) from May to August, May to September or May to November was negatively correlated (r = 0.97, 0.92 and 0.87, respectively, P < 0.05) with rhizome age, it seemed possible that younger rhizomes were ‘recharged’ at a higher rate than older ones. These resource allocation mechanisms pertaining seasonal rhizome storage dynamics are of paramount importance in formulating management and conservation strategies of wetlands and aquatic habitats. Our results indicate that a harvest of above-ground biomass from May to June would be more effective in reducing the growth than a harvest in July to August or later, when rhizome reserves have already been replenished. However, the latter may remove a larger shoot bound nutrient stock, still preserving a healthy stand for the subsequent years.  相似文献   

2.
Latent pathogenic fungi (LPFs) affect plant growth, but some of them may stably colonize plants. LPFs were isolated from healthy Houttuynia cordata rhizomes to reveal this mechanism and identified as Ilyonectria liriodendri, an unidentified fungal sp., and Penicillium citrinum. Sterile H. cordata seedlings were cultivated in sterile or non-sterile soils and inoculated with the LPFs, followed by the plants’ analysis. The in vitro antifungal activity of H. cordata rhizome crude extracts on LPF were determined. The effect of inoculation of sterile seedlings by LPFs on the concentrations of rhizome phenolics was evaluated. The rates of in vitro growth inhibition amongst LPFs were determined. The LPFs had a strong negative effect on H. cordata in sterile soil; microbiota in non-sterile soil eliminated such influence. There was an interactive inhibition among LPFs; the secondary metabolites also regulated their colonization in H. cordata rhizomes. LPFs changed the accumulation of phenolics in H. cordata. The results provide that colonization of LPFs in rhizomes was regulated by the colonizing microbiota of H. cordata, the secondary metabolites in the H. cordata rhizomes, and the mutual inhibition and competition between the different latent pathogens.  相似文献   

3.
Clonal plants in highly disturbed habitats are often broken into small fragments of various sizes and buried at various soil depths. As a storage organ, rhizome fragments play an important role in enabling plants to survive in such habitats. But few studies have been concerned about the regenerative capacity of rhizome fragments of clonal shrubs of different rhizome diameter and at different burial depths. Here, we investigated whether deeper burial decreased, and diameter of the rhizome fragment increased, the regenerative capacity of a clonal shrub. Research samples of rhizome fragment (rhizome diameters of 2, 5, 10, 15, and 20 mm) of the clonal shrub Calligonum arborescens were buried at different depths (0, 1, 5, 10, and 20 cm). Increasing the diameter of the rhizome fragments significantly increased the survival rate of fragments, and increased the above-ground, below-ground and total biomass production of fragments. Vegetative reproduction ability also increased with an increase in diameter of the rhizome fragments. With an increase in sand burial depth, above-ground, below-ground, total biomass production and vegetative reproduction ability first decreased and then increased, and no fragments survived at the 0 cm burial depth. These results indicate that sand burial depth and diameter of the rhizome fragments significantly affected the regeneration capacity of C. arborescens. Sand burial is one of the essential prerequisites for C. arborescens rhizome fragments’ survival. Moderate burial depth (5 cm) and larger fragment diameter (20 mm diameter) were more suitable for biomass production and vegetative reproduction. These results indicate that reserves stored in rhizome fragments can contribute greatly to the regeneration capacity of the C. arborescens—responses that are very important for C. arborescens survival and establishment in frequently disturbed habitats.  相似文献   

4.
5.
Sorghum (Sorghum bicolor) is one of the world''s most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were expressed predominantly in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in Oryza longistaminata and S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development.  相似文献   

6.
7.
In the long-term absence of major disturbances ecosystems enter a state of retrogression, which involves declining soil fertility and consequently a reduction in decomposition rates. Recent studies have looked at how plant traits such as specific leaf mass and amounts of secondary compounds respond to declining soil fertility during retrogression, but there are no comparable studies for lichen traits despite increasing recognition of the role that lichens can play in ecosystem processes. We studied a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. We used this system to explore how specific thallus mass (STM) and carbon based secondary compounds (CBSCs) change in three common epiphytic lichen species (Hypogymnia phsyodes, Melanohalea olivacea and Parmelia sulcata) as soil fertility declines during this retrogression. We found that STMs of lichens increased sharply during retrogression, and for all species soil N to P ratio (which increased during retrogression) was a strong predictor of STM. When expressed per unit area, medullary CBSCs in all species and cortical CBSCs in P. sulcata increased during retrogression. Meanwhile, when expressed per unit mass, only cortical CBSCs in H. physodes responded to retrogression, and in the opposite direction. Given that lichen functional traits are likely to be important in driving ecological processes that drive nutrient and carbon cycling in the way that plant functional traits are, the changes that they undergo during retrogression could potentially be significant for the functioning of the ecosystem.  相似文献   

8.
9.
10.
Endophytic fungi have been isolated from the healthy turmeric (Curcuma longa L.) rhizomes from South India. Thirty-one endophytes were identified based on morphological and ITS–rDNA sequence analysis. The isolated endophytes were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric respectively. Results revealed that only six endophytes showed >?70% suppression of test pathogens in antagonistic dual culture assays. The endophyte T. harzianum TharDOB-31 showed significant in vitro mycelial growth inhibition of P. aphanidermatum (76.0%) and R. solani (76.9%) when tested by dual culture method. The SEM studies of interaction zone showed morphological abnormalities like parasitism, shriveling, breakage and lysis of hyphae of the pathogens by endophyte TharDOB-31. Selected endophytic isolates recorded multiple plant growth promoting traits in in vitro studies. The rhizome bacterization followed by soil application of endophyte TharDOB-31 showed lowest Percent Disease Incidence of rhizome rot and leaf blight, 13.8 and 11.6% respectively. The treatment of TharDOB-31 exhibited significant increase in plant height (85 cm) and fresh rhizome yield/plant (425 g) in comparison with untreated control under greenhouse condition. The confocal microscopy validates the colonization of the TharDOB-31 in turmeric rhizomes. The secondary metabolites in ethyl acetate extract of TharDOB-31 were found to contain higher number of antifungal compounds by high resolution liquid chromatograph mass spectrometer analysis. Thereby, endophyte T. harzianum isolate can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.  相似文献   

11.
The morbidity and mortality rates due to Covid-19 are increasing day by day, to overcome this, we urgently need a better treatment strategy, therefore various ways and strategies for this must be pursued. The purpose of the present review is to explain that the rhizome of bangle (Zingiber montanum) has great potential to increase antibodies and reduce symptoms of acute respiratory distress syndrome (ARDS), which also seems suitable for treating Covid-19. Method: This review is looking for the results of scientific research from various sources, regarding the efficacy of bangle (Zingiber montanum) rhizome which is strongly suspected to be able to prevent, and reduce the symptoms that occur in COVID-19. The results showed that the bangle rhizome extract had activity as immunomodulatory, antiviral and reduced symptoms such as what happened in COVID-19. Conclusion: Bangle rhizome extract has dozens of nutritious substances and has multifunctional activities, and it can be postulated that among the benefits of bangle rhizome extract it is able to prevent and reduce symptoms that occur in Covid-19, and preclinical studies and clinical studies are needed to prove this postulate.  相似文献   

12.
Conservation of seagrasses meadows is important, because these habitats are ecologically important and under threat. Monitoring and modelling are essential tools for assessing seagrass condition and potential threats, however there are many seagrass indicators to choose from, and differentiating between natural variability and declining conditions poses a serious challenge. Tropical seagrass meadows in the Indo-Pacific, in contrast to most temperate meadows, are characterized by a multi-species composition and a year-round growth. Differences in characteristics between species growing within one meadow could induce uncertainty in the assessment of the dynamics of these meadows if variation in productivity and related biomass turnover timescales are not taken into consideration. We present data on biomass distribution, production and turnover timescales of above- and belowground tissues for three key tropical seagrass species (Thalassia hemprichii, Cymodocea rotundata and Halodule uninervis) in two mixed-species meadows in the Spermonde Archipelago, Indonesia. Seagrass leaf turnover time scales were comparable for the three studied seagrass species and varied between 25 and 30 days. Variation in leaf and rhizome turnover timescales were small (or insignificant) between the two meadows. In contrast, rhizome turnover time scales were around ten times longer than leaf turnover timescales, and large differences in rhizome turnover time scales (200–500 days) were observed between the species. The late-successional species T. hemprichii had much slower rhizome turnover compared to the two early successional species. Furthermore, since rhizome biomass has a much longer turnover time compared to leaf biomass, changes in rhizome biomass reflect effects on seagrass meadows on a much longer timescale compared to changes in leaf biomass for these tropical meadows. We conclude that belowground biomass dynamics are an important proxy to assess long-term effects of environmental stressors on seagrass ecosystems and should be included in tropical seagrass management programmes.  相似文献   

13.
Dixit  Deeksha  Srivastava  N.K. 《Photosynthetica》2000,38(2):275-280
Incorporation of photosynthetically fixed 14C was studied at different time intervals of 12, 24, and 36 h in various plant parts—leaf 1 to 4 from apex, roots, and rhizome—into primary metabolites—sugars, amino acids, and organic acids, and secondary metabolites—essential oil and curcumin—in turmeric. The youngest leaves were most active in fixing 14C at 24 h. Fixation capacity into primary metabolites decreased with leaf position and time. The primary metabolite levels in leaves were maximal in sugars and organic acids and lowest in amino acids. Roots as well as rhizome received maximum photoassimilate from leaves at 24 h; this declined with time. The maximum metabolite concentrations in the roots and rhizome were high in sugars and organic acids and least in amino acids. 14C incorporation into oil in leaf and into curcumin in rhizome was maximal at 24 h and declined with time. These studies highlight importance of time-dependent translocation of 14C-primary metabolites from leaves to roots and rhizome and their subsequent biosynthesis into secondary metabolite, curcumin, in rhizome. This might be one of factors regulating the secondary metabolite accumulation and rhizome development.  相似文献   

14.
《Aquatic Botany》1987,27(1):97-119
Bacteria growing on and in close association with the rhizome detritus of two seagrasses, Zostera marina L. and Thalassia testudinum Banks ex König, were examined using epifluorescence and scanning electron microscopy. The microbial community consisted of a diverse assemblage of bacteria dominated in biomass by large rod-shaped and filamentous cells. The large size of cells and the occurrence of measurable acetylene reduction activity suggested that a healthy, growing population of bacteria was associated with the rhizome detritus. Bacteria carbon biomass ranged betwee 5.2×10−5 and 1.7×10−3 g C gdw−1 of rhizome detritus. Depending on cell doubling times, bacterial metabolism could account for a substantial portion of the turnover of rhizome detritus. Estimates of potential microbial production, nitrogen fixation and the physico-chemical nature of rhizome detritus are discussed and we propose hypotheses for the disposition of this detrital organic matter.  相似文献   

15.
Membrane proteins of the amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play an important role in the regulation of cellular processes. We report the heterologous production of the LysP-related transporter STM2200 from Salmonella typhimurium in Escherichia coli, its purification, and functional characterization. STM2200 is assumed to be a proton-dependent APC transporter of l-lysine. The functional interaction between basic amino acids and STM2200 was investigated by thermoanalytical methods, i.e. differential scanning and isothermal titration calorimetry. Binding of l-lysine to STM2200 in its solubilized monomer form is entropy-driven. It is characterized by a dissociation constant of 40 μm at pH 5.9 and is highly selective; no evidence was found for the binding of l-arginine, l-ornithine, l-2,4-diaminobutyric acid, and l-alanine. d-Lysine is bound 45 times more weakly than its l-chiral form. We thus postulate that STM2200 functions as a specific transport protein. Based on the crystal structure of ApcT (Shaffer, P. L., Goehring, A., Shankaranarayanan, A., and Gouaux, E. (2009) Science 325, 1010–1014), a proton-dependent amino acid transporter of the APC superfamily, a homology model of STM2200 was created. Docking studies allowed identification of possible ligand binding sites. The resulting predictions indicated that Glu-222 and Arg-395 of STM2200 are markedly involved in ligand binding, whereas Lys-163 is suggested to be of structural and functional relevance. Selected variants of STM2200 where these three amino acid residues were substituted using single site-directed mutagenesis showed no evidence for l-lysine binding by isothermal titration calorimetry, which confirmed the predictions. Molecular aspects of the observed ligand specificity are discussed.  相似文献   

16.
矩镰荚苜蓿是中国特有植物,分布于青藏高原东缘,具有发达的地下扩展茎。为探明矩镰荚苜蓿地下茎异常发育与高原气候适应的关系,该研究采用常规石蜡切片法对地下茎初生结构与次生结构进行解剖观察。结果表明:(1)与初生结构相比,矩镰荚苜蓿地下茎次生结构发育不均衡,仅有少量维管束正常发育,木质部发达。(2)地下茎次生生长会产生内、外两种周皮,外周皮由靠近韧皮部的内皮层细胞形成,内周皮由靠近木质部的髓细胞形成,内、外周皮形成后取代了表皮和初生结构中的主要薄壁组织,形成了较复杂的新防护系统。(3)外周皮向内隘缩或内周皮向外延伸都会引起地下茎的分裂,但暂未观察到两种分裂方式同时发生。研究认为,矩镰荚苜蓿地下茎形成内、外周皮与异常分裂,可以增强对干旱和寒冷胁迫的抵御能力,是矩镰荚苜蓿对青藏高原寒旱环境的适应策略。  相似文献   

17.
Rhizomes are prostrate subterranean stems that provide primitive mechanisms of vegetative dispersal, survival, and regrowth of perennial grasses and other monocots. The extent of rhizome proliferation varies greatly among grasses, being absent in cereals and other annuals, strictly confined in caespitose perennials, or highly invasive in some perennial weeds. However, genetic studies of rhizome proliferation are limited and genes controlling rhizomatous growth habit have not been elucidated. Quantitative trait loci (QTLs) controlling rhizome spreading were compared in reciprocal backcross populations derived from hybrids of rhizomatous creeping wildrye (Leymus triticoides) and caespitose basin wildrye (L. cinereus), which are perennial relatives of wheat. Two recessive QTLs were unique to the creeping wildrye backcross, one dominant QTL was unique to the basin wildrye backcross, and one additive QTL was detectable in reciprocal backcrosses with high log odds (LOD = 31.6) in the basin wildrye background. The dominant QTL located on linkage group (LG)-2a was aligned to a dominant rhizome orthogene (Rhz3) of perennial rice (Oryza longistamina) and perennial sorghum (Sorghum propinquum). Nonparametric 99 % confidence bounds of the 31.6-LOD QTL were localized to a distal 3.8-centiMorgan region of LG-6a, which corresponds to a 0.7-Mb region of Brachypodium Chromosome 3 containing 106 genes. An Aux/IAA auxin signal factor gene was located at the 31.6-LOD peak, which could explain the gravitropic and aphototropic behavior of rhizomes. Findings elucidate genetic mechanisms controlling rhizome development and architectural growth habit differences among plant species. Results have possible applications to improve perennial forage and turf grasses, extend the vegetative life cycle of annual cereals, such as wheat, or control the invasiveness of highly rhizomatous weeds such as quackgrass (Elymus repens).  相似文献   

18.
19.
20.
《Phytochemistry》1987,26(8):2207-2212
The essential oil from the fresh rhizome of Zingiber officinale was characterized by the presence of acyclic oxygenated monoterpenes mainly composed of neral, geraniol, geranial and geranyl acetate. During storage the content of neral and geranial in the rhizome increased to ca 60% of the essential oil, while the content of geraniol and geranyl acetate decreased to an undetectable amount. The change resulted from the conversion of geranyl acetate into geraniol, geranial and neral, successively. The content of geranial and neral decreased to a small extent through cultivation of the stored rhizome, whereas a large quantity of geraniol and geranyl acetate occurred in the newly propagated fresh rhizome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号