首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Drylands worldwide are typified by extreme variability in hydrologic processes, which structures riparian communities at various temporal and spatial scales. One key question is how underlying differences in hydrology over the length of interrupted perennial rivers influence spatial and temporal patterns in species richness and species composition. 2. We examined effects of differences in dry season hydrology on species richness, composition and cover of herbaceous plant communities in the streamside zone (the zone influenced directly by low flows in the channel). Data were collected at ephemeral, intermittent and perennial flow reaches on three rivers of the desert Southwest (Arizona, U.S.A.): Lower Cienega Creek, Hassayampa River and Lower San Pedro River. 3. Patterns of species richness varied with temporal scale of analysis, that is between single‐year and multi‐year time frames. At the annual timescale, quadrat species richness (m?2) and herbaceous cover were higher at sites with perennial flow than at either intermittent or ephemeral sites. In contrast to this single‐year pattern, the highest long‐term richness occurred at intermittent sites. 4. Quadrat species richness, total species richness at a site (per 18 1‐m2 plots) and cover were more variable year to year at non‐perennial sites than at perennial flow sites. On two of the three rivers, ephemeral sites had the highest inter‐annual compositional variance, while the perennial sites had the lowest. 5. Compositional differences between the hydrologic site types were dominated by species turnover, not nestedness. The perennial sites had more wetland and perennial species than the other two site types. The intermittent sites had more annual species than did the other two types. 6. High long‐term species richness and distinct species composition of intermittent sites are probably sustained by pronounced temporal variability in environmental conditions (i.e. frequent and persistent flow events, and dry periods). Plants at these sites take advantage of greater moisture than those at ephemeral sites and also experience less competition from resident species than those at perennial sites. 7. Conservation of desert riparian diversity depends upon the protection of consistently wet conditions at perennial flow sites, as well as the maintenance of the processes that cause fluctuations in environmental conditions at non‐perennial sites.  相似文献   

2.
Knowledge of the dispersal mechanisms used by plants is important in phylogenetic, ecological, biogeographical, and conservation studies. Here we attempt to assign dispersal mechanisms to the entire flora-2595 plant species of the New Zealand Botanical Region. Anemochory is the most frequent dispersal mechanism, utilised by 79% of species. The next most frequent mechanisms are endozoochory (33%), hydrochory (28%), epizoochory (26%), and ballistic (8%). Polychory is common, particularly in monocotyledonous and dicotyledonous families and hydrochorous, epizoochorous, and ballistically dispersed species. Epizoochory is more common in New Zealand than in other regions, and species using this dispersal mechanism are over-represented among threatened species. Frugivory is less common than previously reported, and is under-represented among threatened species. Some mechanisms are poorly known, and entanglement and capsulivory are dispersal mechanisms apparently unique to New Zealand. Dispersal mechanisms reflective of New Zealand's distinctive assemblages of large flightless birds and reptiles are not apparent. A pattern of reduction in dispersal-related structures is evident in some genera. The mechanisms utilised by some species are ambiguous. Thus there remains a need for further investigation of the dispersal mechanisms utilised by plants in New Zealand.  相似文献   

3.
In riparian areas, the distribution patterns of plant species are generally considered to depend on their flooding tolerance. Areas around river confluences are known to experience frequent and/or strong flooding events and provide diverse habitats for plants in riparian areas. However, the degree to which hydrophilic vegetation types increase their distribution around confluences may depend on their flooding tolerance. To test this hypothesis, we compared patch numbers and total areas of ten vegetation groups between confluences and single-flow areas. The vegetation groups were classified on the basis of life form and morphology of dominant species. Additionally, we compared total area of natural bare ground (an index of flooding disturbance) between confluences and single-flow areas. We found that patch numbers of annual grass, forb, and vine, perennial grass and forb, and riparian forest vegetation, as well as total areas of annual forb and vine, perennial grass and forb, bamboo and riparian forest vegetation, and natural bare ground, were greater around river confluences than in single-flow areas. On the other hand, patch numbers of shrub vegetation and total areas of annual grass, perennial vine, willow, and shrub vegetation decreased around confluences. These results suggest that confluences enhance diverse, but not all, types of habitat for hydrophilic vegetation. Thus, river confluences are a key element in maintaining diverse riparian vegetation.  相似文献   

4.
Wadi Arar in the Northern border region of Saudi Arabia is one of the most important Wadis of the Kingdom. The present study provides an analysis of vegetation types, life forms, as well as floristic categories and species distribution. A total of 196 species representing 31 families of vascular plants were recorded. Compositae, Gramineae and Leguminosae were the most common families. Therophytes and chamaephytes are the most frequent life forms, indicating typical desert spectrum vegetation. The distribution of these species in the different sectors of the Wadi as well as the phytochoria for the recorded species is provided. Ninety-one species (46.5%) are typical bi-regional. Furthermore, about 105 species (53.5%) are mono- or pluriregional taxa. The highest number of species (136 or 69.5%) was recorded for annual plants, while the lowest number of species (60% or 30.5%) was recorded for perennial, short perennial or annual to biennial species.  相似文献   

5.
New models for seed dispersal and competition between plant species are formulated and analyzed. The models are integrodifference equations, discrete in time and continuous in space, and have applications to annual and perennial species. The spread or invasion of a single plant species into a geographic region is investigated by studying the travelling wave solutions of these equations. Travelling wave solutions are shown to exist in the single-species models and are compared numerically. The asymptotic wave speed is calculated for various parameter values. The single-species integrodifference equations are extended to a model for two competing annual plants. Competition in the two-species model is based on a difference equation model developed by Pakes and Maller [26]. The two-species model with competition and dispersal yields a system of integrodifference equations. The effects of competition on the travelling wave solutions of invading plant species is investigated numerically.  相似文献   

6.
Seed dispersal and mycorrhizal associations are key mutualisms for the functioning and regeneration of plant communities; however, these processes have seldom been explored together. We hypothesised that obligatory mycorrhizal plants will be less likely to have long‐distance dispersal (LDD) syndromes since the probability of finding suitable mycorrhizal partners is likely to decrease with distance to the mother plant. We contrasted the mycorrhizal status and LDD syndromes for 1960 European plant species, using phylogenetically corrected log‐linear models. Contrary to our expectation, having specialised structures for LDD is more frequent in obligate mycorrhizal plants than in non‐mycorrhizal plants, revealing that lack of compatible mutualists does not constrain investment in LDD structures in the European Flora. Ectomycorrhizal plants associated with wind‐dispersing fungi are also more likely to have specialised structures for wind dispersal. Habitat specificity and narrower niche of non‐mycorrhizal plants might explain the smaller investment in specialised structures for seed dispersal.  相似文献   

7.
miRNA control of vegetative phase change in trees   总被引:3,自引:0,他引:3  
After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.  相似文献   

8.
Agri-environment schemes, like flower fields, have been implemented in the EU to counteract the dramatic decline of farmland biodiversity. Farmers in Lower Saxony, Germany, may receive payments for three flower field types: annual, perennial (five years old), and mixed flower fields composed of yearly alternating annual and biannual parts. We assessed the effectiveness of these flower field types in providing bumblebee foraging habitat compared to control cereal fields. We sampled bumblebees with transect walks and assessed the richness of exploited pollen plants using DNA meta-barcoding and direct observations.All flower field types enhanced bumblebee abundance and species richness compared to control fields but attracted mostly three generalist species. Although we expected highest benefits from the more heterogeneous mixed flower fields, abundance was highest in annual, only intermediate in mixed, and lowest in perennial flower fields. Bumblebee species richness did not differ between flower field types.Overall, the proportion of sown plants in pollen loads was surprisingly low (< 50%). Bombus pascuorum, but not B. terrestris agg., exploited 10% of the sown plant species in perennial, 36% in annual and 45% in mixed flower fields, respectively. Compared to direct observations, pollen samples revealed 4.5 times more visited plant species and thus assessed floral resource use more reliably. Plant species richness in pollen loads decreased with local flowering plant species richness and increased with proportion of annual crops in the landscape, potentially due to the exploitation of more diverse and scattered resources, including flowering crops, in homogenized landscapes to fulfil dietary requirements.Our results indicate that under the current management, both annual and mixed flower fields provide the most attractive food resources, while perennial flower fields offered the poorest foraging habitats. Conclusively, flower fields seem important but resources from the surrounding landscape are still needed to sustain bumblebees in agricultural landscapes.  相似文献   

9.
孟雅冰  李新蓉 《生态学报》2015,35(23):7785-7793
集合繁殖体(synaptospermy)是荒漠植物为适应恶劣环境条件而演化出的关键性特征,其作为植物生活史特性之一,有助于了解在荒漠环境下集合繁殖体植物的适应策略。蒺藜(Tribulus terrestris)和欧夏至草(Marrubium vulgare)分别为一年生及多年生草本植物,蒺藜扩散单位由一朵花发育而成的集合繁殖体组成,欧夏至草扩散单位由多朵花发育的集合繁殖体和种子组成,以这两种植物为材料,对其集合繁殖体形态、活力、吸水及萌发特性进行初步研究。结果显示:(1)蒺藜集合繁殖体依照发育成熟先后位置在质量、附属物刺的长度、附属物占质量百分比、种子数、活力、吸水量、萌发率及萌发速率均存在显著差异;欧夏至草集合繁殖体质量及吸水量明显大于种子,而活力、萌发率及萌发速率不存在显著差异。(2)萌发位置上,蒺藜集合繁殖体仅在长刺端位置的种子萌发,属非随机萌发,而欧夏至草集合繁殖体萌发不具有规律性,属随机萌发;萌发时间上,蒺藜和欧夏至草集合繁殖体在当季下均只萌发部分种子,具间歇性萌发特性。(3)对不同生活型植物而言,其集合繁殖体附属物对种子的保护、保水、扩散及萌发行为的功能相同,但一年生草本植物的萌发行为侧重于种群繁衍,因此蒺藜集合繁殖体在当季萌发率及萌发速率较高;多年生草本植物的萌发行为侧重于种群扩散,因此欧夏至草扩散单位多样化,且萌发率及萌发速率较低。  相似文献   

10.
Considerable attention has been directed toward understanding the wide gaps in range that are common among many groups of closely related organisms. By placing their biology and geography in a phylogenetic context, we may gain a broader knowledge of the series of historical events that have led to present species distributions. In addition to the North American annuals, a second radiation of annual Castilleja species is in Andean Peru and central Chile. Phylogenetic analyses of chloroplast and nuclear DNA regions revealed a complex history for the origin and diversification of annual Castilleja species in South America. In addition to at least three independent long-distance dispersal events from North America, allopolyploidy has played a significant role in this disjunct radiation. Only C. attenuata occurs in both California and South America, and these results support its recent arrival to central Chile. Two Peruvian species are inferred to be allopolyploids; hybridization between annual lineages derived from independent long-distance dispersal events from North America gave rise to C. profunda, and hybridization between South American annual and perennial species gave rise to C. cerroana. The relative importance these events are discussed with reference to the observed morphological, ecological, and distributional patterns.  相似文献   

11.
Performance differences between native and exotic invasive plants are often considered static, but invasive grasses may achieve growth advantages in western North America shrublands and steppe under only optimal growing conditions. We examine differences in N uptake and several morphological variables that influence uptake at temperatures between 5 and 25 °C. We contrast two native perennial grasses in western North America: Elymus elymoides and Pseudoroegneria spicata; two invasive annual grasses: Bromus tectorum and Taeniatherum caput-medusae; and one highly selected non-native perennial grass: Agropyron cristatum. The influence of temperature on N uptake is poorly characterized, yet these invasive annual grasses are known to germinate in warm soils in the autumn, and both experience cool soils during the short growing season following snowmelt in the spring. To further explore the influence of temperature on the correlation between morphological variables and N uptake, our data are applied to a previously published path model and one proposed here. Differences in N uptake between native and invasive grasses were small at the lowest temperature, but were large at the highest temperature. At lower temperatures, uptake of N by annuals and perennials was correlated with leaf N and mass. At higher temperatures, uptake by annuals was correlated only with these leaf traits, but uptake by perennials was correlated with these leaf traits as well as root N and mass. Consequently, our results imply that annual grasses face fewer morphological constraints on N uptake than perennial grasses, and annual grasses may gain further advantage in warmer temperature conditions or during more frequent warm periods.  相似文献   

12.
Morphological functional types and photosynthetic pathway types were identified for the forage species from steppe communities in Inner Mongolia, China, using the data of both field survey and published papers. Seven typical steppe communities were selected to investigate the morphological functional type and photosynthetic pathway type compositions and plant functional type (PFT) diversity in steppe communities at regional scale. Morphological functional types, based on plant height and leaf type combined with life span, were optimal for comparing the community differences in the region, while photosynthetic pathway types were fairly coarse for such studies. Of the seven morphological functional types in the steppe communities, perennial forbs (PEF) were the dominant type, and 60 % of species belonged to this type. Each of the high perennial grass (HPG), short perennial grass (SPG), and annual grass (ANG) types represented less than 10 % of the total, even though the grass species were dominant in the seven steppe communities. The differences of PFTs between the steppe communities were remarkable, and the PFT richness and diversity increased from the communities with moist conditions to the ones with dry environments.  相似文献   

13.
不同沙丘生境主要植物比叶面积和叶干物质含量的比较   总被引:42,自引:2,他引:42  
研究了生长在不同沙丘生境中 (流动沙丘 ,半固定沙丘和固定沙丘 ) 2 0个植物种 (10个 1年生植物种和 10个多年生植物种 )的比叶面积 (SL A)和叶干物质含量 (L DMC)的变化 ,并且分析了各个沙丘生境的土壤养分特征。结果表明 ,各个植物种的平均 SL A和 L DMC在植物种之间差异显著 ;多数在两种或 3种沙丘生境均有分布的植物其 SL A在不同沙丘生境之间差异显著 ,但是仅有 6个植物种的 L DMC在不同沙丘生境之间表现出差异 (p<0 .0 5 )。与许多研究结果类似 ,1年生植物的 SL A显著大于多年生植物的 SL A,而且两者之间 L DMC存在一定的差异。 1年生植物 SL A和 L DMC之间相关性不显著 ,但多年生植物SL A和 L DMC之间呈显著负相关。综合所有 2 0个植物种可以发现 ,SL A增大时 ,L DMC有下降的趋势  相似文献   

14.
15.
We studied the ecological characteristics of the plants of Italian cultivated land that cause allergies in sensitized individuals. Differences between the allergenic flora of annual and perennial cultivations were found. Prevalence of annual therophytes was found in seasonal and annual crops subjected to soil tillage and to strong human disturbance. Plants growing in stable, moderately disturbed cultivations (citrus and olive groves, vineyards) were more often perennials. Allergenic species dispersed by wind and those endowed with multiple dispersal strategies (polychory) were well represented in seasonal and annual crops. The moderate height of these cultivations facilitates circulation of air, favouring the diffusion of anemochoric plants, which explains the abundance of the Poaceae and the Asteraceae families. The spreading of some allochthonous invasive allergenic species was ascertained. The entrance of allergenic plants from surrounding natural ecosystems increases the overall allergenicity of Italian cultivations. The results obtained pointed out a strong relationship between allergenic flora, human impact, and the structure of the cultivations. They point out the importance of knowledge about the ecological characteristics of the allergenic flora infesting the cultivations, which enables efficacious control of the diffusion of the most dangerous species.  相似文献   

16.
蚁对植物种子的传播作用   总被引:4,自引:0,他引:4  
许多种子植物依靠动物传播种子 ,称为动物传播。根据动物类群的不同 ,可分为哺乳类传播 ,鸟传播 ,鱼传播 ,蚁传播等。鸟传播和蚁传播的研究近年取得了很大的进展 ,但国内在这方面研究较缺乏 ,作者已就鸟传播作了综述报道 ,现将蚁传播的研究综述报道如下。1 蚁与植物的相互关系蚁类属膜翅目 (Hymenoptera) ,蚁科 (Formici dae) ,典型的社会性昆虫。多数蚁类是肉食性的 ,以小动物或更小的蚁类为食 ,但也有很多蚁类是植物食性的。在大多数生态系统中均有蚁类分布 ,而且蚁类数量众多 ,在森林生态系统中每 1ha可达 6~10…  相似文献   

17.
R. Z. Wang 《Photosynthetica》2004,42(4):493-503
Morphological functional types and photosynthetic pathway types were identified for the forage species from steppe communities in Inner Mongolia, China, using the data of both field survey and published papers. Seven typical steppe communities were selected to investigate the morphological functional type and photosynthetic pathway type compositions and plant functional type (PFT) diversity in steppe communities at regional scale. Morphological functional types, based on plant height and leaf type combined with life span, were optimal for comparing the community differences in the region, while photosynthetic pathway types were fairly coarse for such studies. Of the seven morphological functional types in the steppe communities, perennial forbs (PEF) were the dominant type, and 60 % of species belonged to this type. Each of the high perennial grass (HPG), short perennial grass (SPG), and annual grass (ANG) types represented less than 10 % of the total, even though the grass species were dominant in the seven steppe communities. The differences of PFTs between the steppe communities were remarkable, and the PFT richness and diversity increased from the communities with moist conditions to the ones with dry environments.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

18.
How perennial are perennial plants?   总被引:13,自引:0,他引:13  
Johan Ehrln  Kari Lehtil 《Oikos》2002,98(2):308-322
Trade-offs involving life span are important in the molding of plant life histories. However, the empirical examination of such patterns has so far been limited by the fact that information on life span is mainly available in terms of discrete categories; annuals, semelparous perennials and iteroparous perennials. We used transition matrix models to project continuous estimates of conditional life spans from published information on size- or stage-structured demography for 71 perennial plant species. The projected life span ranged from 4.3 to 988.6 years and more than half of the species had a life span of more than 35 years. Woody plants had on average a projected life span more than four times as long as non-woody plants. Life spans were higher in forests than in open habitats and individuals of non-clonal species tended to have a longer life span than ramets of clonal species. Self-incompatible plants on average lived longer than self-compatible plants. There were no clear relations between life span and geographical region, dispersal syndrome, pollination mode, seed size or the presence of a seed bank. We conclude that accurate estimates of life span are central to understand how longevity is correlated to other traits within the group of perennial plants.  相似文献   

19.
Seed characteristics of 76 plant species from wetlands along four black-water and two white-water rivers in the Southeastern Venezuelan Llanos were examined. Weight, length, width, color, appendages, shape, and dispersal type of seeds were determined. Life form, leaf type and fruit type of plants also were described. Thirty-eight percent were perennial heloculms, 28% helosuffrutescents, 13% heloterophytes and 5% annual heloculms. Dominant leaf types were nanopylls and microphylls. Ninety-six percent of species showed dehiscent and indehiscent dry fruits (achene, capsule, nutlet, follicle). Sixty-five percent of species had seed dry weights between 32 and 315 μg. Lengths and widths of the seeds ranged from 0.2 to 6.2 mm and 0.1 to 4.1 mm, respectively. Seventy-six percent of species had seeds reddish brown, yellowish brown and amber in color, with 17% black and 7% white. Seventy-seven percent of species had seeds represented by pterochory, pogonochory, sclerochory, desmochory, and pleochory dispersal types, with 11% sarchochory, and 12% barochory. The seed size showed significant differences among families, life forms, geometric shapes and dispersal types. In general, species from wet and open environments (marshes) along black- and white-water rivers showed low variation in seed color and size, and were dispersed mainly by abiotic agents.  相似文献   

20.
An understanding of the patterns of spread of invasive plant species requires analysis of the major dispersal mechanisms and of the patch structure of suitable habitats, both of which may be scale-dependent. On a larger scale, information from herbarium or literature records has proved useful for the reconstruction of past spread of invasive plants. The objective of this study is to investigate population development of invasive forbs at the scale of a site or stand (the population scale) by using herb-chronology. The feasibility of this approach has been largely disregarded until now because of the perceived difficulties in determining the age of perennial herbs. However, recent findings suggest that most of the dicotyledonous perennial herbs in the seasonal climates develop annual rings in the roots or subterraneous stems and thus demonstrate a high potential of the method in studies on plant invasions that went almost unnoticed. The spatial position and age (by means of analysis of annual rings) of individual plants were determined in invasion patches of five species of perennial forbs in Germany and in the USA. The data thus obtained revealed different spatio-temporal patterns of population development that are consistent with distinct models of (local) plant spread, including diffuse invasion and front-like invasion patterns, and thus suggest different processes at work in the course of invasion. The results suggest that analysis of spatial age structures is useful (i) to estimate rates of patch expansion, (ii) to distinguish between dispersal- and microsite-limited population development, (iii) to evaluate how different site conditions affect population development, and (iv) to help understand metapopulation dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号