首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
The attainment of complete map‐based sequence for rice (Oryza sativa) is clearly a major milestone for the research community. Identifying the localization of encoded proteins is the key to understanding their functional characteristics and facilitating their purification. Our proposed method, RSLpred, is an effort in this direction for genome‐scale subcellular prediction of encoded rice proteins. First, the support vector machine (SVM)‐based modules have been developed using traditional amino acid‐, dipeptide‐ (i+1) and four parts‐amino acid composition and achieved an overall accuracy of 81.43, 80.88 and 81.10%, respectively. Secondly, a similarity search‐based module has been developed using position‐specific iterated‐basic local alignment search tool and achieved 68.35% accuracy. Another module developed using evolutionary information of a protein sequence extracted from position‐specific scoring matrix achieved an accuracy of 87.10%. In this study, a large number of modules have been developed using various encoding schemes like higher‐order dipeptide composition, N‐ and C‐terminal, splitted amino acid composition and the hybrid information. In order to benchmark RSLpred, it was tested on an independent set of rice proteins where it outperformed widely used prediction methods such as TargetP, Wolf‐PSORT, PA‐SUB, Plant‐Ploc and ESLpred. To assist the plant research community, an online web tool ‘RSLpred’ has been developed for subcellular prediction of query rice proteins, which is freely accessible at http://www.imtech.res.in/raghava/rslpred.  相似文献   

3.
Ho SY  Yu FC  Chang CY  Huang HL 《Bio Systems》2007,90(1):234-241
In this paper, we investigate the design of accurate predictors for DNA-binding sites in proteins from amino acid sequences. As a result, we propose a hybrid method using support vector machine (SVM) in conjunction with evolutionary information of amino acid sequences in terms of their position-specific scoring matrices (PSSMs) for prediction of DNA-binding sites. Considering the numbers of binding and non-binding residues in proteins are significantly unequal, two additional weights as well as SVM parameters are analyzed and adopted to maximize net prediction (NP, an average of sensitivity and specificity) accuracy. To evaluate the generalization ability of the proposed method SVM-PSSM, a DNA-binding dataset PDC-59 consisting of 59 protein chains with low sequence identity on each other is additionally established. The SVM-based method using the same six-fold cross-validation procedure and PSSM features has NP=80.15% for the training dataset PDNA-62 and NP=69.54% for the test dataset PDC-59, which are much better than the existing neural network-based method by increasing the NP values for training and test accuracies up to 13.45% and 16.53%, respectively. Simulation results reveal that SVM-PSSM performs well in predicting DNA-binding sites of novel proteins from amino acid sequences.  相似文献   

4.
Functional annotation of protein sequences with low similarity to well characterized protein sequences is a major challenge of computational biology in the post genomic era. The cyclin protein family is once such important family of proteins which consists of sequences with low sequence similarity making discovery of novel cyclins and establishing orthologous relationships amongst the cyclins, a difficult task. The currently identified cyclin motifs and cyclin associated domains do not represent all of the identified and characterized cyclin sequences. We describe a Support Vector Machine (SVM) based classifier, CyclinPred, which can predict cyclin sequences with high efficiency. The SVM classifier was trained with features of selected cyclin and non cyclin protein sequences. The training features of the protein sequences include amino acid composition, dipeptide composition, secondary structure composition and PSI-BLAST generated Position Specific Scoring Matrix (PSSM) profiles. Results obtained from Leave-One-Out cross validation or jackknife test, self consistency and holdout tests prove that the SVM classifier trained with features of PSSM profile was more accurate than the classifiers based on either of the other features alone or hybrids of these features. A cyclin prediction server--CyclinPred has been setup based on SVM model trained with PSSM profiles. CyclinPred prediction results prove that the method may be used as a cyclin prediction tool, complementing conventional cyclin prediction methods.  相似文献   

5.
6.
7.
Lee S  Lee BC  Kim D 《Proteins》2006,62(4):1107-1114
Knowing protein structure and inferring its function from the structure are one of the main issues of computational structural biology, and often the first step is studying protein secondary structure. There have been many attempts to predict protein secondary structure contents. Previous attempts assumed that the content of protein secondary structure can be predicted successfully using the information on the amino acid composition of a protein. Recent methods achieved remarkable prediction accuracy by using the expanded composition information. The overall average error of the most successful method is 3.4%. Here, we demonstrate that even if we only use the simple amino acid composition information alone, it is possible to improve the prediction accuracy significantly if the evolutionary information is included. The idea is motivated by the observation that evolutionarily related proteins share the similar structure. After calculating the homolog-averaged amino acid composition of a protein, which can be easily obtained from the multiple sequence alignment by running PSI-BLAST, those 20 numbers are learned by a multiple linear regression, an artificial neural network and a support vector regression. The overall average error of method by a support vector regression is 3.3%. It is remarkable that we obtain the comparable accuracy without utilizing the expanded composition information such as pair-coupled amino acid composition. This work again demonstrates that the amino acid composition is a fundamental characteristic of a protein. It is anticipated that our novel idea can be applied to many areas of protein bioinformatics where the amino acid composition information is utilized, such as subcellular localization prediction, enzyme subclass prediction, domain boundary prediction, signal sequence prediction, and prediction of unfolded segment in a protein sequence, to name a few.  相似文献   

8.
DNA结合蛋白(DNA-binding proteins,DBPs)的鉴定在原核和真核生物的基因和蛋白质功能注释研究中具有十分重要的意义.本研究首次运用间隔二肽组分(gapped-dipeptide composition,Gap DPC)结合递归特征消除法(recursive feature elimination,RFE)鉴定DBPs.首先获得待测蛋白质氨基酸序列的位置特异性得分矩阵(position specific scoring matrix,PSSM),在此基础上提取蛋白质的Gap DPC特征,通过RFE法选择最优特征,然后利用支持向量机(support vector machine,SVM)作为分类器,在蛋白质序列数据集PDB396和LB1068中进行夹克刀交叉验证(jackknife cross validation test).研究结果显示,基于PDB396和LB1068数据集,DBPs预测的准确率、Matthews相关系数、敏感性和特异性分别达到93.43%、0.86、89.04%和96.00%,以及86.33%、0.73、86.49%和86.18%,明显优于文献报道中的相关方法,为DBPs的鉴定提供了新的模型.  相似文献   

9.
Prediction of neurotoxins based on their function and source   总被引:1,自引:0,他引:1  
Saha S  Raghava GP 《In silico biology》2007,7(4-5):369-387
We have developed a method NTXpred for predicting neurotoxins and classifying them based on their function and origin. The dataset used in this study consists of 582 non-redundant, experimentally annotated neurotoxins obtained from Swiss-Prot. A number of modules have been developed for predicting neurotoxins using residue composition based on feed-forwarded neural network (FNN), recurrent neural network (RNN), support vector machine (SVM) and achieved maximum accuracy of 84.19%, 92.75%, 97.72% respectively. In addition, SVM modules have been developed for classifying neurotoxins based on their source (e.g., eubacteria, cnidarians, molluscs, arthropods have been and chordate) using amino acid composition and dipeptide composition and achieved maximum overall accuracy of 78.94% and 88.07% respectively. The overall accuracy increased to 92.10%, when the evolutionary information obtained from PSI-BLAST was combined with SVM module of source classification. We have also developed SVM modules for classifying neurotoxins based on functions using amino acid, dipeptide composition and achieved overall accuracy of 83.11%, 91.10% respectively. The overall accuracy of function classification improved to 95.11%, when PSI-BLAST output was combined with SVM module. All the modules developed in this study were evaluated using five-fold cross-validation technique. The NTXpred is available at www.imtech.res.in/raghava/ntxpred/ and mirror site at http://bioinformatics.uams.edu/mirror/ntxpred.  相似文献   

10.
11.
12.
Here we report a systematic approach for predicting subcellular localization (cytoplasm, mitochondrial, nuclear, and plasma membrane) of human proteins. First, support vector machine (SVM)-based modules for predicting subcellular localization using traditional amino acid and dipeptide (i + 1) composition achieved overall accuracy of 76.6 and 77.8%, respectively. PSI-BLAST, when carried out using a similarity-based search against a nonredundant data base of experimentally annotated proteins, yielded 73.3% accuracy. To gain further insight, a hybrid module (hybrid1) was developed based on amino acid composition, dipeptide composition, and similarity information and attained better accuracy of 84.9%. In addition, SVM modules based on a different higher order dipeptide i.e. i + 2, i + 3, and i + 4 were also constructed for the prediction of subcellular localization of human proteins, and overall accuracy of 79.7, 77.5, and 77.1% was accomplished, respectively. Furthermore, another SVM module hybrid2 was developed using traditional dipeptide (i + 1) and higher order dipeptide (i + 2, i + 3, and i + 4) compositions, which gave an overall accuracy of 81.3%. We also developed SVM module hybrid3 based on amino acid composition, traditional and higher order dipeptide compositions, and PSI-BLAST output and achieved an overall accuracy of 84.4%. A Web server HSLPred (www.imtech.res.in/raghava/hslpred/ or bioinformatics.uams.edu/raghava/hslpred/) has been designed to predict subcellular localization of human proteins using the above approaches.  相似文献   

13.
Guo J  Lin Y  Liu X 《Proteomics》2006,6(19):5099-5105
This paper proposes a new integrative system (GNBSL--Gram-negative bacteria subcellular localization) for subcellular localization specifized on the Gram-negative bacteria proteins. First, the system generates a position-specific frequency matrix (PSFM) and a position-specific scoring matrix (PSSM) for each protein sequence by searching the Swiss-Prot database. Then different features are extracted by four modules from the PSFM and the PSSM. The features include whole-sequence amino acid composition, N- and C-terminus amino acid composition, dipeptide composition, and segment composition. Four probabilistic neural network (PNN) classifiers are used to classify these modules. To further improve the performance, two modules trained by support vector machine (SVM) are added in this system. One module extracts the residue-couple distribution from the amino acid sequence and the other module applies a pairwise profile alignment kernel to measure the local similarity between every two sequences. Finally, an additional SVM is used to fuse the outputs from the six modules. Test on a benchmark dataset shows that the overall success rate of GNBSL is higher than those of PSORT-B, CELLO, and PSLpred. A web server GNBSL can be visited from http://166.111.24.5/webtools/GNBSL/index.htm.  相似文献   

14.
Intrinsically disordered proteins are an important class of proteins with unique functions and properties. Here, we have applied a support vector machine (SVM) trained on naturally occurring disordered and ordered proteins to examine the contribution of various parameters (vectors) to recognizing proteins that contain disordered regions. We find that a SVM that incorporates only amino acid composition has a recognition accuracy of 87+/-2%. This result suggests that composition alone is sufficient to accurately recognize disorder. Interestingly, SVMs using reduced sets of amino acids based on chemical similarity preserve high recognition accuracy. A set as small as four retains an accuracy of 84+/-2%; this suggests that general physicochemical properties rather than specific amino acids are important factors contributing to protein disorder.  相似文献   

15.
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.  相似文献   

16.
Hsu JB  Bretaña NA  Lee TY  Huang HD 《PloS one》2011,6(11):e27567
Regulation of pre-mRNA splicing is achieved through the interaction of RNA sequence elements and a variety of RNA-splicing related proteins (splicing factors). The splicing machinery in humans is not yet fully elucidated, partly because splicing factors in humans have not been exhaustively identified. Furthermore, experimental methods for splicing factor identification are time-consuming and lab-intensive. Although many computational methods have been proposed for the identification of RNA-binding proteins, there exists no development that focuses on the identification of RNA-splicing related proteins so far. Therefore, we are motivated to design a method that focuses on the identification of human splicing factors using experimentally verified splicing factors. The investigation of amino acid composition reveals that there are remarkable differences between splicing factors and non-splicing proteins. A support vector machine (SVM) is utilized to construct a predictive model, and the five-fold cross-validation evaluation indicates that the SVM model trained with amino acid composition could provide a promising accuracy (80.22%). Another basic feature, amino acid dipeptide composition, is also examined to yield a similar predictive performance to amino acid composition. In addition, this work presents that the incorporation of evolutionary information and domain information could improve the predictive performance. The constructed models have been demonstrated to effectively classify (73.65% accuracy) an independent data set of human splicing factors. The result of independent testing indicates that in silico identification could be a feasible means of conducting preliminary analyses of splicing factors and significantly reducing the number of potential targets that require further in vivo or in vitro confirmation.  相似文献   

17.
Zhang SW  Pan Q  Zhang HC  Shao ZC  Shi JY 《Amino acids》2006,30(4):461-468
Summary. The interaction of non-covalently bound monomeric protein subunits forms oligomers. The oligomeric proteins are superior to the monomers within the scope of functional evolution of biomacromolecules. Such complexes are involved in various biological processes, and play an important role. It is highly desirable to predict oligomer types automatically from their sequence. Here, based on the concept of pseudo amino acid composition, an improved feature extraction method of weighted auto-correlation function of amino acid residue index and Naive Bayes multi-feature fusion algorithm is proposed and applied to predict protein homo-oligomer types. We used the support vector machine (SVM) as base classifiers, in order to obtain better results. For example, the total accuracies of A, B, C, D and E sets based on this improved feature extraction method are 77.63, 77.16, 76.46, 76.70 and 75.06% respectively in the jackknife test, which are 6.39, 5.92, 5.22, 5.46 and 3.82% higher than that of G set based on conventional amino acid composition method with the same SVM. Comparing with Chou’s feature extraction method of incorporating quasi-sequence-order effect, our method can increase the total accuracy at a level of 3.51 to 1.01%. The total accuracy improves from 79.66 to 80.83% by using the Naive Bayes Feature Fusion algorithm. These results show: 1) The improved feature extraction method is effective and feasible, and the feature vectors based on this method may contain more protein quaternary structure information and appear to capture essential information about the composition and hydrophobicity of residues in the surface patches that buried in the interfaces of associated subunits; 2) Naive Bayes Feature Fusion algorithm and SVM can be referred as a powerful computational tool for predicting protein homo-oligomer types.  相似文献   

18.
Sethi D  Garg A  Raghava GP 《Amino acids》2008,35(3):599-605
The association of structurally disordered proteins with a number of diseases has engendered enormous interest and therefore demands a prediction method that would facilitate their expeditious study at molecular level. The present study describes the development of a computational method for predicting disordered proteins using sequence and profile compositions as input features for the training of SVM models. First, we developed the amino acid and dipeptide compositions based SVM modules which yielded sensitivities of 75.6 and 73.2% along with Matthew’s Correlation Coefficient (MCC) values of 0.75 and 0.60, respectively. In addition, the use of predicted secondary structure content (coil, sheet and helices) in the form of composition values attained a sensitivity of 76.8% and MCC value of 0.77. Finally, the training of SVM models using evolutionary information hidden in the multiple sequence alignment profile improved the prediction performance by achieving a sensitivity value of 78% and MCC of 0.78. Furthermore, when evaluated on an independent dataset of partially disordered proteins, the same SVM module provided a correct prediction rate of 86.6%. Based on the above study, a web server (“DPROT”) was developed for the prediction of disordered proteins, which is available at .  相似文献   

19.
Nicotinamide adenine dinucleotide (NAD) plays an important role in cellular metabolism and acts as hydrideaccepting and hydride-donating coenzymes in energy production. Identification of NAD protein interacting sites can significantly aid in understanding the NAD dependent metabolism and pathways, and it could further contribute useful information for drug development. In this study, a computational method is proposed to predict NAD-protein interacting sites using the sequence information and structure-based information. All models developed in this work are evaluated using the 7-fold cross validation technique. Results show that using the position specific scoring matrix (PSSM) as an input feature is quite encouraging for predicting NAD interacting sites. After considering the unbalance dataset, the ensemble support vector machine (SVM), which is an assembly of many individual SVM classifiers, is developed to predict the NAD interacting sites. It was observed that the overall accuracy (Acc) thus obtained was 87.31% with Matthew's correlation coefficient (MCC) equal to 0.56. In contrast, the corresponding rate by the single SVM approach was only 80.86% with MCC of 0.38. These results indicated that the prediction accuracy could be remarkably improved via the ensemble SVM classifier approach.  相似文献   

20.
Guo J  Chen H  Sun Z  Lin Y 《Proteins》2004,54(4):738-743
A high-performance method was developed for protein secondary structure prediction based on the dual-layer support vector machine (SVM) and position-specific scoring matrices (PSSMs). SVM is a new machine learning technology that has been successfully applied in solving problems in the field of bioinformatics. The SVM's performance is usually better than that of traditional machine learning approaches. The performance was further improved by combining PSSM profiles with the SVM analysis. The PSSMs were generated from PSI-BLAST profiles, which contain important evolution information. The final prediction results were generated from the second SVM layer output. On the CB513 data set, the three-state overall per-residue accuracy, Q3, reached 75.2%, while segment overlap (SOV) accuracy increased to 80.0%. On the CB396 data set, the Q3 of our method reached 74.0% and the SOV reached 78.1%. A web server utilizing the method has been constructed and is available at http://www.bioinfo.tsinghua.edu.cn/pmsvm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号