首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The concentrations of three classes of polyamines, trichloroacetic acid-soluble (free), TCA-soluble conjugated (to small molecules) and TCA-insoluble conjugated (to macromolecules), was examined during de novo floral and vegetative bud formation in thin cell layers of Nicotiana tabacum L. cv. Samsun. Explants (consisting of 5–6 layers of epidermal, subepidermal and parenchyma cells) were excised either from floral pedicels or from stem internodes at the unripe fruit stage and cultured on the same medium. In the former, the first de novo formed flower buds appeared on day 8 of culture, while in the latter the first vegetative domes appeared on day 10. In both cases the number of floral and vegetative buds increased up to day 12 and 15, respectively. Changes in dry weight were determined throughout the culture period. Free and conjugated putrescine titer increased 5–60 times in both types of culture and in the three classes of polyamines examined; spermidine content also increased, while spermine, when present, did not show significant changes. TCA-soluble conjugated polyamines were most abundant, being about 2-fold the TCA-insoluble conjugated ones and 10-fold the free ones. The major increment in putrescine and spermidine content occurred in stem internode explants developing vegetative buds. In pedicel explants the maximum putrescine level was reached before or on day 8 in culture (emergence of the first flower buds with calyx initials), while in stem internode explants the maximum level was reached on day 12, at the emergence of the first vegetative buds with leaf primordia. While spermidine prevailed on day 0, putrescine was the most abundant polyamine during both differentiation processes. The putrescine content rapidly increased immediately after the onset of culture. Thus conjugated polyamines, especially putrescine, and not only the free ones, seem to be involved in both the reproductive and vegetative phases of tobacco growth and development.  相似文献   

2.
3.
Since in tobacco thin layers exogenous putrescine alters the physiological and mor-phogenic responses induced by IAA (indole-3-acetic acid) and/or BA (benzylade-nine), the effect of this polyamine on protease activity and on the formation of meristemoids and vegetative primordia was studied during morphogenesis. Superficial thin layer explants, excised from the stem of tobacco (Nicotiana tabacum L. cv. Samsun) plants in the vegetative stage, were cultured under various hormonal conditions (IAA, IAA+BA, BA) and in a hormone-free medium, in the presence or absence of 100 μM putrescine. Histological analysis showed that no meristemoids were formed on the control medium or with putrescine alone and only a few were formed on IAA-treated explants with or without putrescine. An increasing number of meristemoids was observed in IAA+BA and BA treatments during culture; in both cases this number was enhanced by the presence of exogenous putrescine. Protease activity was evaluated spectrophotometrically using two synthetic substrates, azocasein and N-benzoyl-DL-arginine-p-nitroanilide (BAPNA). In the former, maximum protease activity was observed in IAA+BA- and BA-treated explants on days 10 and 15, respectively, while with IAA activity was lowest, the maximum occurring on days 5–10. In this case exogenous putrescine enhanced protease activity in the presence of IAA alone or with BA, while it decreased it in the presence of BA. BAPNA-mediated proteolytic activity (serine-proteases) was highest in IAA+BA-treated explants, intermediate in BA- and not different from controls in IAA-treated explants. Putrescine only affected proteolytic activity in IAA+BA treatments. The use of specific inhibitors of protease activities indicated that these enzymes belong to two main classes of proteases, that is serine- and thiol-proteases. The pattern of proteolytic activities during culture appeared to be related to the differentiation of meristemoids into vegetative primordia. The effect of exogenous putrescine on protease activity was different depending on different synthetic substrates, developmental patterns, pH and ionic strength.  相似文献   

4.
Summary The proliferative growth of thin cell layers ofNicotiana tabacum cultured on a rhizogenic medium was markedly disturbed when polyamine biosynthesis was inhibited. Treatments with polyamine inhibitors led to cell expansion, accompanied by thinning of the cell wall and inhibition of cell division, and frequent cases of nucleolar extrusion, mainly in the parenchymal layer in contact with the medium. Nucleolar extrusion was not correlated with cell expansion. The highest incidence of nucleolar extrusion occurred when the pathways of putrescine biosynthesis were inhibited and when spermidine synthesis, via S-adenosylmethionine decarboxylase, was blocked. The duration of the growth phase with nuclear amitotic divisions was prolonged in the presence of the inhibitors and root meristem formation delayed. When polyamines were added with the inhibitors, all reactions proceeded as in the controls.Abbreviations CHA cyclohexylamine - DFMA DL--difluoromethyl-arginine - DFMO DL--difluoromethylornithine - LS longitudinal section - MGBG methylglyoxal-bis(guanylhydrazone) - PA polyamine - Pu putrescine - RLS radial longitudinal section - S.E. standard error - Spd spermidine  相似文献   

5.
Studies on stress ethylene and ethane during protoplast isolation from water-stressed and waterlogged donor plants Nicotiana tabacum L. xanthi-nc, show a correlation between ethane, but not ethylene, release and protoplast survival in vitro. Ethane release shows a high negative correlation with protoplast survival potential from donor plants subjected to both stresses. Ethylene showed a high negative correlation with protoplast survival potential in tissues from water-stressed but not from long-term waterlogged plants. The absence of correlation in the latter may be related to decreased ability to produce ethylene in hyperstressed plants.
The results are discussed in relation to the use of stress ethane release as a parameter of the physiological status of the plant.  相似文献   

6.
Summary Internode stem expiants ofNicotiana tabacum cv. Samsun, consisting of eight cell layers: epidermis, subepidermal chlorenchyma, collenchyma and cortical parenchyma (i.e., thin cell layers), were cultured under conditions inducing rhizogenesis. The aim was to investigate the histological sequence of adventitious root formation in this system. The earliest cytological events in culture (12 h) were nucleolar extrusions and amitotic nuclear divisions. Though not restricted to a specific cell layer, the two phenomena were more frequent in the subepidermal chlorenchyma, and characterized the first phases (12-96 h) of cell proliferation mainly occurring in this layer. Amitoses were followed by the formation of thin walls within the original cells, resulting in the formation of intracellular clusters. These subepidermal clusters were separated by enlarged cells of the parent tissue, whose nuclei showed nucleolar extrusion. At day 3 the first mitoses were observed in cells having abundant starch inclusions. Amitotic divisions also continued, but less frequently. The increasing frequency of mitoses in the subepidermal chlorenchyma (day 4), as well as in the two underlying collenchymatous layers, contributed to the growth of the superficial clusters, in which small clumps of meristematic cells were formed; these, later (day 9), gave rise to root domes. The 5th cell layer remained undivided for a relatively long time (two weeks). The 6th and 7th layers proliferated mitotically later (from day 8 onwards) than the superficial layers and formed root domes following the same histological sequence. Wound callus, generated by the innermost layer, increased markedly in the last two weeks of culture and concomitantly formed vascular clumps surrounded by meristematic layers; these produced root primordia which were frequently anomalous (day 26–27). Regardless of its origin (i.e., superficial or deep layers of the expiant, or wound callus cells), root tip formation was always preceded by the differentiation of a sheath of starch-containing cells, from which the root cap developed.Abbreviations LS longitudinal section - S.E. standard error - TVS transverse section  相似文献   

7.
Thin cell layers excised from tobacco ( Nicotiana tabacum L. cv. Samsun) stem internodes, with an appropriate exogenous hormonal balance, were able to form a greater number of roots, and in a larger percentage of the explants (93%) than when they were excised from pedicels (40%). The developmental sequence of root formation and explant growth were followed by histological analysis. Free and bound [trichloroacetic acid (TCA)-soluble and -insoluble] putrescine and spermidine increased in the explants, particularly when root meristemoids appeared. These meristemoids originated in the superficial (day 6 in culture) or deep (days 10–11) layers and inside the newly formed callus (day 25). At those times, TCA-soluble and, to a lesser extent, TCA-insoluble bound putrescine predominated over the other polyamines. Spermine was always present in trace amounts. Polyamines decreased again when root and callus formation was completed (day 30). The involvement of these three classes of polyamines (free, TCA-soluble and -insoluble) in morphogenic processes is discussed.  相似文献   

8.
自李季伦等首次发现越冬的冬小麦茎尖中存在玉米赤霉烯酮(zearalenone,以下简称ZEN)的类似物以后,大量的工作证实了高等植物可内源产生ZEN,并发现ZEN与植物的春化作用,光周期(短日)诱导以及花器官的分化、成熟乃至开花都密切相关。薄细胞层(Thin cell layers,以下简称TCL)具有外植体小和组成均匀,易于进行组织培养、对环  相似文献   

9.
10.
11.
The effects of two inhibitors of polyamine (spermidine and spermine) biosynthesis, cyclohexylamine (CHA; 5 and 10 mM) and methylglyoxal(bis-guanylhydrazone) (MGBG; 0.1, 0.5 and 1 mM), on the organogenic response in vegetative bud-forming tobacco (Nicotiana tabacum L. cv. Samsun) thin layer explants were evaluated micro- and macroscopically at different times during culture. The final number of buds formed and the percentage of organogenic explants was significantly reduced by both inhibitors, but much more so by MGBG than CHA. This inhibitory effect was already evident in MGBG-treated explants on day 5, in terms of the number of meristemoids per explant. On the contrary, in the presence of CHA, the number of meristemoids on day 5 was higher than that in the controls. Between days 9 and 13, meristemoid formation slowed down considerably in inhibitor-treated explants compared with controls. On day 13, the number of bud primordia was similar in control and CHA-treated explants, but significantly lower in MGBG-treated explants. This inhibitor also induced peculiar cytohistological events, such as a reduced formation of oval-shaped cell aggregates on the explant surface and more frequent cases of nucleolar extrusion, while CHA led to the appearance of hypertrophic epidermal cells; callus formation at the basal end of the explant and xylogenesis were also affected by the inhibitors. Ethylene biosynthesis, measured as [ C]methionine incorporation, was stimulated 2- (day 2) to 3-fold (15 h) by 0.5 mM MGBG, whereas CHA (10 mM) had little effect and aminoethoxyvinylglycine (AVG; 0.1 μM), an ethylene synthesis inhibitor, was strongly inhibitory. In control explants, the incorporation of labelled methionine into ethylene and spermidine followed an inverse trend up to day 8. In these explants, free putrescine increased 32-fold and spermidine increased about 10-fold between days 0 and 8. Trichloroacetic acid (TCA)-soluble conjugated putrescine also accumulated dramatically during culture. While CHA provoked a decline in spermidine levels, MGBG caused an unexpected increase in free spermidine and spermine titres; however, its most conspicuous effect was on the further enhancement of putrescine conjugate accumulation, while CHA and AVG had the opposite effect. Results are discussed in view of establishing a putative link between MGBG-enhanced ethylene synthesis, increased conjugate titres and inhibition of meristemoid formation.  相似文献   

12.
13.
Role of ethylene in auxin-induced flower bud formation in tobacco explants   总被引:1,自引:0,他引:1  
The effect of ethytene on in vitro flower bud formation in thin-layer explants from tobacco pendicels ( Nicotiana tabacum L. cv. Samsun) was studied Endogenous ethylene production was stimulated by l-minocyclopropanc-l-carhoxylic acid (ACT), and inhibited by aminoethoxyviny lglycine (AVG). resulting in higher and lower ethylene accumulation. respectively. In the presence of an elevated ethylene concentration, the number of flower buds formed after 7 days of culture in explants was increased, compared with the control. Treatment with AVG or with AgNO3 which blocks ethylene action resulted in decreased bud numbers after 7 days of culture. A different effect of ethylene was visible after 14 days of culture, when regeneration was complete. Treatment with AgNO3 led to more bud regeneration, and increasing ethylene concentrations to lower bud numbers. The endogenous production of ethylene was enhanced by high concentrations of 1-naphthaleneacetic acid (NAA).
The inhibitory effect of applied ethylene was almost 100% in explants cultured at low concentrations of NAA (below 1 μ M ). but hardly visible at high concentrations (4.5 μ M ). As a consequence, the optimal NAA concentration shifted to a higher value in the presence of ethylene. These results are interpreted as a reduction in tissue sensitivity to auxin and in regenerative capability by ethylene. The effect of ethylene on auxin action is not exerted at the level of hormone concentration. Neither NAA uptake nor conversion to conjugates was effected by ethylene.  相似文献   

14.
Different types of morphogenesis in thin cell layers of Nicotiana tabacum cv. Samsun were studied in relation to changes in the external H+ concentration during cluture. Different initial pHs of the medium, ranging from 3.83 to 6.35, were tested under unbuffered and MES-buffered conditions, in combination with various amounts of indolyl-3-butyric acid and kinetin. The explants were sequentially transferred from MES-free media to MES-supplemented media, as well as reciprocally, to determine possible periods during the morphogenic process that showed a particular sensitivity to the external pH. Starting from pH 3.83, 36 m M MES induced the formation of limited callus and of vegetative and floral shoots as flowers in the control. MES at 50 m M inhibited rhizogenesis and either prevented morphogenesis or induced vegetative buds or flowers, depending on the initial pH. The 4th day of culture was a determining period in the induction of roots and flowers. Rhizogenesis, but not floral or vegetative organogenesis, was related to the theoretical intracellular concentration of indolyl-3-butyric acid. H+ transport might be involved in the regulation of morphogenesis.  相似文献   

15.
Three lines of evidence indicated a connectionbetween zearalenone (ZEN) and flower bud formationin thin cell layer (TCL) explants of Nicotianatabacum L. cv. Samsun. (1) There were two peaks inthe endogenous ZEN level during the formation offlower buds. (2) The specific inhibitor of ZENbiosynthesis, malathion (MAL), inhibited thebiosynthesis of endogenous ZEN and at the same timeflower bud neoformation. (3) Exogenous ZEN inducedflower bud neoformation.  相似文献   

16.
The accumulation and metabolism of exogenously applied and endogenously produced auxins and cytokinins were studied in relation to organogenesis in thin cell layers of Nicotiana tabacum L. It was shown that, in order to obtain maximal flower bud formation, both exogenous auxin and cytokinin needed to be present during the first 4 days of culture (to the formation of a subepidermal meristematic zone) whereas cytokinins needed to be present for at least 4 days more (until formation of organogenic centres). Explants taken from floral branches have higher endogenous indole-3-acetic acid (IAA) levels compared with explants from the basal part of the stem which form only vegetative buds. This might be related to a different IAA metabolism in these two types of explants as was shown by the different accumulation of exogenously applied IAA. Both 'floral' and 'vegetative' cells layers contained comparable amounts of zeatin riboside (ZR) as their major cytokinin. Free bases, zeatin (Z) and dihydrozeatin [(diH)Z], given exogenously, were largely metabolised to their respective ribosides. The observation that Z was less effective than (diH)Z in the induction of flower buds could be related to (diH)ZR apparently not being a substrate for cytokinin oxidase.  相似文献   

17.
The aim of the present study was to determine early cyto-histological events associated with the reduced number of shoots formed at the end of culture in tobacco (Nicotiana tabacum L.) thin cell layers treated with methyl jasmonate (MJ) [S. Biondi et al. (2001) J Exp Bot 52:1–12]. The results show that 0.1–10 M MJ strongly stimulated mitotic activity early in culture relative to untreated controls. Treatment with MJ also induced anomalous mitoses. Enhanced proliferative growth was confirmed by northern analysis and in situ hybridisation using cDNA probes of the G1/S phase-specific genes ubiquitin carboxyl-extension protein (ubi-CEP), topoisomerase 1 (top1) and ribonucleotide reductase (RNR). The formation of meristematic cell clusters on day 5 was also enhanced by 1 M MJ, but subsequent development of these cell clusters into meristemoids and shoot primordia was reduced by all MJ concentrations in a dose-dependent manner. Cell expansion was stimulated by MJ concentrations ranging from 0.001 to 10 M; expanded cells frequently occurred around and within meristemoids and shoot primordia, and displayed thickened and suberised cell walls; cell wall thickness increased with increasing MJ concentration. These cytological events caused alterations in the tunica and stem differentiation of the shoot dome. The apparently paradoxical role of MJ, which deregulates shoot formation through a stimulation of growth events, i.e., mitotic activity and cell expansion, is discussed.  相似文献   

18.
Mitochondria isolated from tobacco ( Nicotiana tabacum L. cv. Wisconsin 38) callus growing on either shoot-forming or non-shoot forming medium show an increase in state 3 and state 4 respiration and a drop in respiratory control and ADP/O ratios after subculture. the protein content of the mitochondria fraction and the activity of succinate dehydrogenase, malate dehydrogenase, cytochrome c oxidase and catalase also increase after subculture but there is no apparent difference between shoot-forming and non-shoot-forming tissue. For mitochondria assayed at their native osmolarities, a trend of higher respiration rates and respiratory control as well as lower levels of cyanide-resistant respiration was observed for shoot-forming tissue. Generally, differences were greatest after day 9 in culture, the time during which primordia formation occurred in the shoot-forming callus. These patterns are in concert with the view that the shoot-forming process has a high energy requirement which must be realized during the time of primordia formation.  相似文献   

19.
The germination and growth of pollen grains of Nicotiana tabacum and N. alata with the anti-microtubule drug oryzalin retarded significantly the movement of the vegetative nucleus (VN) and the generative cell (GC) from the grain to the tube apex but had no effect on pollen tube elongation. In N. tabacum, only 11% and 48% of the pollen tubes treated with oryzalin for 6 h and 12 h, respectively, had the VN and GC in the tube mainly in its middle part. In corresponding control materials, 79% and 99% of pollen tubes contained the VN and GC close to the apex. Indirect immunofluorescence microscopy and related studies of the tubes grown in the presence of oryzalin revealed complete absence of microtubules (MTs) but apparently intact microfilaments (MFs). These results suggested that the movement of VN and GC from the grain into the tube is possible when no MTs but only MFs are present, but the movement is then slow. In control tubes, the parallel orientation of MT bundles and extensions of VN were interpreted to represent the structural organization needed for the MT-dependent movement of VN.  相似文献   

20.
This paper describes, for the first time, de novo adventitious root formation from thin cell layers (TCLs) of Arabidopsis thaliana. The objective of the study was to determine the optimal hormonal and light conditions and the optimal exogenous Ca2+ concentration for obtaining adventitious rooting (AR) from A. thaliana TCLs and to identify the tissue(s) involved in the process. The results show that maximum AR was obtained with a single-phase method in the presence of 10 M indole-3-butyric acid and 0.1 M kinetin under continuous darkness for 30 days and with 0.6 mM exogenous CaCl2. The endodermis was the only tissue involved in root meristemoid formation. The role of Ca2+ in AR and the importance of using Arabidopsis TCLs in studies on the genetic/biochemical control of AR are discussed.Abbreviations AR Adventitious rooting - CIM Callus-inducing medium - Col-0 Columbia ecotype - 2,4-D 2,4-Dichlorophenoxyacetic acid - HFM Hormone-free medium - HM Medium with 10 M IBA and 0.1 M Kin - IBA Indole-3-butyric acid - Kin Kinetin - LS Longitudinal section - NAA -Naphthaleneacetic acid - RIM Root-inducing medium - TCL Thin cell layer - WS Wassilewskija ecotype  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号