首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. Detection of impairment in macroinvertebrate communities using rapid biological assessment depends on the ability to compare sites, with confidence that differences obtained result from water quality. However, collections from more than one habitat type may introduce variation that can potentially mask water quality differences among sites. Data were collected from the riffle, edge, pool-rock and macrophyte habitats at reference (minimally disturbed) and test (disturbed) stream sites throughout the Australian Capital Territory. The effect of habitat-specific sampling on predictive models for detecting impairment in macroinvertebrate communities was determined. Four models were used: riffle only, edge only, each habitat as an individual object, and all habitats sampled at a site considered as a composite sample. 2. Macroinvertebrates from individual habitats generally clustered into separate groups because collections from the same habitat at different sites were more similar than collections from different habitats within a site. Thus, in the habitats as individual objects model, the taxa predicted to occur at a test site may be an indication of habitat type rather than water quality. The outputs of the composite habitats and riffle and edge models were similar. However, the variable number of habitats included at each site in the composite model may confound the detection of biological impairment because of unequal sampling effort. The riffle and edge models were the most robust because they were less confounded by inter-habitat variation and were based on comparisons made between equivalent environmental units. 3. Comparison of observed/expected taxa ratios for test sites showed that each model could detect biological impairment, indicating considerable data redundancy was introduced by sampling several habitats. In particular, the pool-rock and macrophyte habitats contributed no information with regard to macroinvertebrate taxon occurrence or detection of biological impairment that could not be obtained from either the riffle or edge habitats within the study area.  相似文献   

2.
Reduced habitat quality after fragmentation can significantly affect population viability, but the effects of differing quality of the remaining habitat on population fitness are rarely evaluated. Here, I compared fragmented populations of the cycad Zamia melanorrhachis from habitats with different history and subject to contrasting levels of disturbance to explore potential demographic differences in populations across habitat patches that could differ in habitat quality. Secondary-forest fragments had a lower canopy cover and soil moisture than remnant-forest fragments, which may represent a harsh environment for this cycad. A smaller average plant size and lower population density in the secondary-forest fragments support the hypothesis that these fragments may be of lower quality, e.g., if plants have reduced survival and/or fecundity in these habitats. However, variation in the stage-structure of populations (i.e., the relative proportions of non-reproductive and reproductive plants) was associated with the area of the forest fragments rather than the type of habitat (remnant versus secondary forest). These results suggest that different demographic parameters may respond differently to habitat fragmentation, which may be explained if processes like adult survival and recruitment depend on different characteristics of the habitat, e.g., average light/water availability versus suitable area for plant establishment. This study shows that forest fragments may differ drastically in environmental conditions and can sustain populations that can vary in their demography. Understanding how forest fragments may represent different habitat types is relevant for evaluating population viability in a heterogeneous landscape and for designing conservation programs that account for this heterogeneity.  相似文献   

3.
Geographic variation in species richness has been explained by different theories such as energy, productivity, energy–water balance, habitat heterogeneity, and freezing tolerance. This study determines which of these theories best account for gradients of breeding bird richness in China. In addition, we develop a best-fit model to account for the relationship between breeding bird richness and environment in China. Breeding bird species richness in 207 localities (3271 km2 per locality on average) from across China was related to thirteen environmental variables after accounting for sampling area. The Akaike's information criterion (AIC) was used to evaluate model performance. We used Moran's I to determine the magnitude of spatial autocorrelation in model residuals, and used simultaneous autoregressive model to determine coefficients of determination and AIC of explanatory variables after accounting for residual spatial autocorrelation. Of all environmental variables examined, normalized difference vegetation index, a measure of plant productivity, is the best variable to explain the variance in breeding bird richness. We found that species richness of breeding birds at the scale examined is best predicted by a combination of plant productivity, elevation range, seasonal variation in potential evapotranspiration, and mean annual temperature. These variables explained 47.3% of the variance in breeding bird richness after accounting for sampling area; most of the explained variance in richness is attributable to the first two of the four variables.  相似文献   

4.
Synopsis The terminal phase/initial phase ratios of four common Bahamian parrotfishes were determined by visual censuring in a variety of coral reef habitats. In general, greater environmental differences among habitats were associated with more variable phase ratios. The phase ratios of the four species remained stable over a 12 months period in the single habitat in which this was tested, These results suggest that environmental factors strongly affect the phase (and therefore sex) ratios maintained by breeding groups of parrotfishes.  相似文献   

5.
In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially increase average abundance of a persisting population, provided that the variation is positively autocorrelated--in effect, temporal variation inflates average abundance. Here we extend these results to a metapopulation in which all habitat patches are sinks. Using numerical studies of a population with discrete generations (buttressed by analytic results), we show that temporal variation and moderate dispersal can jointly permit indefinite persistence of the metapopulation and that positive autocorrelation both lowers the magnitude of variation required for persistence and increases the average abundance of persisting metapopulations. These effects are weakened--but not destroyed--if variation in local growth rates is spatially synchronized and dispersal is localized. We show that the inflationary effect is robust to a number of extensions of the basic model, including demographic stochasticity and density dependence. Because ecological and environmental processes contributing to temporally variable growth rates in natural populations are typically autocorrelated, these observations may have important implications for species persistence.  相似文献   

6.
Abstract. We evaluate the potential influence of disturbance on the predictability of alpine plant species distribution from equilibrium‐based habitat distribution models. Firstly, abundance data of 71 plant species were correlated with a comprehensive set of environmental variables using ordinal regression models. Subsequently, the residual spatial autocorrelation (at distances of 40 to 320 m) in these models was explored. The additional amount of variance explained by spatial structuring was compared with a set of functional traits assumed to confer advantages in disturbed or undisturbed habitats. We found significant residual spatial autocorrelation in the habitat models of most of the species that were analysed. The amount of this autocorrelation was positively correlated with the dispersal capacity of the species, levelling off with increasing spatial scale. Both trends indicate that dispersal and colonization processes, whose frequency is enhanced by disturbance, influence the distribution of many alpine plant species. Since habitat distribution models commonly ignore such spatial processes they miss an important driver of local‐ to landscape‐scale plant distribution.  相似文献   

7.
We investigate how model populations respond to stochastic harvesting in a stochastic environment. In particular, we show that the effects of variable harvesting on the variance in population density and yield depend critically on the autocorrelation of environmental noise and on whether the endogenous dynamics of the population display over- or undercompensation to density. These factors interact in complicated ways; harvesting shifts the slope of the renewal function, and the net effect of this shift will depend on the sign and magnitude of the other influences. For example, when environmental noise exhibits a positive autocorrelation, the relative importance of a variable harvest to the variance in density increases with overcompensation but decreases with undercompensation. For a fixed harvesting level, an increasing level of autocorrelation in environmental noise will decrease the relative variation in population density when overcompensation would otherwise occur. These and other intricate interactions have important ramifications for the interpretation of time series data when no prior knowledge of demographic or environmental details exists. These effects are important whenever the harvesting rate is sufficiently high or variable, conditions likely to occur in many systems, whether the harvesting is caused by commercial exploitation or by any other strong agent of density-independent mortality.  相似文献   

8.
Traditional conservation biology regards environmental fluctuations as detrimental to persistence, reducing long-term average growth rates and increasing the probability of extinction. By contrast, coexistence models from community ecology suggest that for species with dormancy, environmental fluctuations may be essential for persistence in competitive communities. We used models based on California grasslands to examine the influence of interannual fluctuations in the environment on the persistence of rare forbs competing with exotic grasses. Despite grasses and forbs independently possessing high fecundity in the same types of years, interspecific differences in germination biology and dormancy caused the rare forb to benefit from variation in the environment. Owing to the buildup of grass competitors, consecutive favorable years proved highly detrimental to forb persistence. Consequently, negative temporal autocorrelation, a low probability of a favorable year, and high variation in year quality all benefited the forb. In addition, the litter produced by grasses in a previously favorable year benefited forb persistence by inhibiting its germination into highly competitive grass environments. We conclude that contrary to conventional predictions of conservation and population biology, yearly fluctuations in climate may be essential for the persistence of rare species in invaded habitats.  相似文献   

9.
The use of movement data as an assay of habitat quality   总被引:4,自引:0,他引:4  
Based on our observations and those of others from the literature, we construct a graphical model of habitat use in territorial species at high densities relative to optimal habitat availability. This model ignores differences in abundance among habitats, and, together with other models of habitat use, predicts that there should be greater stability (lower turnover rates) among individuals occupying optimal habitat than among those in suboptimal habitat(s). Future studies assessing quality among habitats might take advantage of this by comparing individual turnover rates among habitat types using standard mark-recapture methodology. As an illustrative example, we present a case in wintering wood thrushes (Catharus mustelinus; Muscicapidae: Turdinae) in which relative abundance and habitat quality were inversely related. Many individuals of this nearctic-neotropic migrant species hold nonbreeding territories in the seemingly crowded rainforest of southern Veracruz, Mexico.  相似文献   

10.
Aim To evaluate the relative role of environmental factors and geographical position (latitude and longitude) in determining species distribution and composition of local assemblages of butterflies and birds. Location Czech Republic, central Europe. Methods Canonical correspondence analysis that ordinates species and samples (grid cells in distribution atlases) such that interspecific and intersample differences attributable to environmental factors are maximized. The technique allowed us to test the significance of individual factors, including the geographical ones, by controlling the other factors and accounting for spatial autocorrelation. Results Altitude and climate (temperature and precipitation) accounted for most variance in the interspecific differences in distribution of both butterflies and birds. The distribution of birds was also strongly affected by the area of water bodies, and less strongly, but still significantly, by the area of meadows and mountain open habitats. Habitat types important for the differences in butterfly distribution were deciduous forests, meadows, swamps and mountain open habitats. Some less common habitat types were important only because of the presence of rare species. Latitude and longitude invariably accounted for a large proportion of total variance, and their effect was highly significant even after controlling for the effect of all other environmental factors. Main conclusions Although environmental factors, especially those related to elevation and climate, represent the main determinants of species distribution and composition of local assemblages, the geographical position is very important on this scale of resolution. Understanding distribution patterns, thus, must include not only an understanding of species ecological requirements, but also an understanding of geographical context, which affects structure and dynamics of species’ geographical ranges.  相似文献   

11.
Top predators need to develop optimal strategies of resources and habitats utilization in order to optimize their foraging success. At the individual scale, a predator has to maximize his intake of food while minimizing his cost of foraging to optimize his energetic gain. At the ecosystem scale, we hypothesized that foraging strategies of predators also respond to their general energetic constraints. Predators with energetically costly lifestyles may be constrained to select high quality habitats whereas more phlegmatic predators may occupy both low and high quality habitats. The objectives of this study were 1) to investigate predator responses to heterogeneity in habitat quality with reference to their energetic strategies and 2) to evaluate their responses to contemporaneous versus averaged habitat quality. We collected cetacean and seabird data from an aerial survey in the Southwest Indian Ocean, a region characterized by heterogeneous oceanographic conditions. We classified cetaceans and seabirds into energetic guilds and described their habitats using remotely sensed covariates at contemporaneous and time‐averaged resolutions and static covariates. We used generalized additive models to predict their habitats at the regional scale. Strategies of habitat utilization appeared in accordance with predators energetic constraints. Cetaceans responded to the heterogeneity in habitat quality, with higher densities predicted in more productive areas. However, the costly Delphininae appeared to be more dependent on habitat quality (showing a 1‐to‐13 ratio between the lowest and highest density sectors) than the more phlegmatic sperm and beaked whales (showing only a 1‐to‐3 ratio). For seabirds, predictions primarily reflected colony locations, although the colony effect was stronger for costly seabirds. Moreover, our results suggest that predators may respond better to persistent oceanographic features. To provide a third dimension to habitat quality, cetacean strategies of utilization of the vertical habitat could be related to the distribution of micronekton in the water column.  相似文献   

12.
We studied patterns of variation in species composition of flea assemblages on small mammals across different habitats of Slovakia and compared flea species composition within and across host species among habitats. We asked (1) how variable the composition of flea assemblages is among different populations of the same host occurring in different habitats and (2) whether the composition of flea assemblages in a habitat is affected either by species composition of hosts or by environmental affinities of this habitat. Between-habitat similarity in flea species composition increased with an increase in the similarity in host species composition. Species richness of flea assemblages of a host species correlated positively with mean number of cohabitating host species but not with the number of habitats occupied by a host species. Results of the ordination of flea collections from each individual host demonstrated that the first five principal components explained most of the variance in species composition of flea assemblages. The segregation between rodent and insectivore flea assemblages was easily discerned from the ordination diagram when flea assemblages were plotted according to their hosts. When flea assemblages were plotted according to their habitat affinities, the distinction of habitats based on variation in flea composition was not as clear. The results of ANOVA of each principal component showed the significant effect of both host species and habitat type. The variation in each principal component was explained better by the factor of host species compared with the factor of habitat type. Multidimensional scaling of flea assemblages within host species across habitats demonstrated that among-habitat variation in flea composition was manifested differently in different hosts.  相似文献   

13.
Chapman  M.G. 《Hydrobiologia》2000,426(1):75-87
Intertidal areas are habitats at the border of two very different environments: the marine environment and the terrestrial environment. In contrast to many habitats at borders, intertidal areas are very variable in space and time. They have upshore and alongshore gradients of environmental conditions, which change through time in predictable (due to changing tides) and unpredictable (due to changing weather) ways. Because most animals and plants on rocky shores are marine in origin, extreme highshore levels are generally considered more harsh and unpredictable environments than are mid- or lowshore levels. In this study, the linear distances and directions dispersed by the littorinid Littorina unifasciata while foraging were compared across randomly-chosen mid- and highshore replicated sites to test the hypothesis that movement during foraging was more variable from place to place in complex midshore habitats. Experiments were repeated on different days to test the hypothesis that temporal variability in movement was greater at high- than at midshore levels because environmental conditions necessary for foraging were more variable high on the shore. Finally, the data were used to test models about differences in variability among individuals in the same patch of habitat according to their recent history of submersion/emersion. In contrast to expectations, dispersal was more variable in space and time within and among highshore sites. The implications of such variable behaviour are discussed with respect to the generalization of patterns of behaviour from sparse data and the levels of replication needed in the design of experiments to investigate behaviour of intertidal animals.  相似文献   

14.
Lindblom L  Ekman S 《Molecular ecology》2006,15(6):1545-1559
Genetic diversity and fine-scale population structure in the lichen-forming ascomycete Xanthoria parietina was investigated using sequence variation in part of the intergenic spacer (IGS) and the complete internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA. Sampling included 213 and 225 individuals, respectively, from seven populations in two different habitats, bark and rock, on the island Storfosna off the central west coast of Norway. Both markers revealed significant variation and a total of 10 IGS and 16 ITS haplotypes were found. There were no signs of significant positive spatial autocorrelation at any spatial size class down to 10% of transect length, nor did we find significant deviations from neutrality or signs of historical population expansion. Analysis of molecular variance (amova) indicated that most of the genetic variance observed was within populations, but when populations were grouped according to habitat, more than a quarter of the variance was explained among groups. Pairwise comparisons of populations (F(ST), exact tests of population differentiation) revealed significant differentiation between populations in different habitats (on bark or rock), but not between populations in the same habitat. Haplotype networks show that internal and presumably old haplotypes are shared between habitats, whereas terminal haplotypes tend to be unique to a habitat, mostly bark. We interpret the observed pattern to mean that there is no evidence of restricted gene flow between populations in the same habitat at the present spatial scale (interpopulation distances one or a few kilometres). On the other hand, differentiation between habitats is considerable, which we attribute to restricted gene flow between habitats (habitat isolation). Evidence suggests that the observed differentiation did not evolve locally. Estimates of divergence time between populations in the respective habitats indicate that an ancestral population started to diverge at least 34,000 years ago but probably much further back in time.  相似文献   

15.
Measurements of light variation among leaves within crowns of five Piper species were compared with estimates of spatial variation in light within understory, forest edge, and clearing habitats to estimate the extent to which crown structure contributes to variation in leaf light environment. Daily photon flux density (PFD) varied greatly within and among crowns. Coefficients of variation for daily PFD among sensors within a single crown ranged from 26 to 79%. Within a single crown located in a clearing, the range in daily PFD among leaves was nearly as great as the range over the entire sample of plants. In the understory, localized sunfleck activity contributed to a high degree of spatial variation in instantaneous and total PFD among leaves within individual crowns. Much of the microsite variation in sunfleck activity, however, reflected environmental conditions within the understory habitat. Within an array of sensors placed next to Piper crowns in the understory, correlations were poor for light sensors spaced only 0.2 m apart, and only 8% of the variance in light readings was explained by measurements made 0.5 m away. In the clearing habitats, microsite heterogeneity among leaves was more strongly influenced by leaf positions within crowns and leaf angles than by spatial heterogeneity within the habitat.  相似文献   

16.
Recent assessments of biodiversity in tropical agroecosystems have revealed surprisingly high functional and taxonomic diversity in systems with low management intensity. This biodiversity is the product of community assembly. Because agroecosystems are novel ecosystems and occur in landscape mosaics, the assembly processes generating communities in agroecosystems are poorly resolved. Broadly, two models have been proposed to explain landscape assembly: trade‐offs in species performance across habitats (species sorting) and source‐sink dynamics between habitats of differential quality (mass effects). These models are largely untested in tropical agroecosystems. We utilize an extensive data set on a tropical twig‐nesting ant community from five microhabitat types in a shaded coffee agroecosystem to test for species sorting, mass effects, or a mixed model. To test among these models, we used community similarity and a variance decomposition on a focal microhabitat (a moderate‐shade coffee farm) to partition community variance into spatial and environmental components. To identify the source habitat for mass effects and assess their strength, we measured dispersing alates (winged reproductives), artificial nests, and colony and nest size in shade trees and coffee. We found significant environmental and spatial signal and evidence for both species sorting and mass effects. We find sorting occurs among common species, but that mass effects are prevalent among rare species and likely originate in the shade trees. Our results indicate that both metacommunity models occur in tropical landscape mosaics, but they may not apply equally to all species in communities, habitat gradients, or timescales.  相似文献   

17.
Daniel Ramp  Graeme Coulson 《Oikos》2002,98(3):393-402
For a free‐ranging forager, the suitability of a patch is dependent on population density, resource supply, resource quality, and the costs of foraging or dispersal. We quantified differences among three foraging habitats and compared this variation to temporal patterns of habitat preference by free‐ranging eastern grey kangaroos, Macropus giganteus. We investigated selection on a fine‐grained spatial scale, and asked whether habitat preference is constrained by density‐dependent mechanisms. Variation in the quantity and quality of resources among habitats was greatest during spring, when biomass and quality were highest, and differences among habitats were most pronounced. However, consistent and discernable differences among habitats were not obtained, indicating that the system fluctuated around an equilibrium state. Using isodar regressions to examine the consumer‐density relationships among habitats, open‐woodland habitat was favoured over the two open‐forest habitats for foraging. Seasonal isodars indicated that density dependence regulated preference between the three foraging habitats during autumn, spring and summer, but not during winter, when variability in resources among habitats was lowest.  相似文献   

18.
扎龙湿地芦苇分株生态可塑性及其对土壤因子的响应   总被引:1,自引:0,他引:1  
焦德志  于欣宇  王昱深  潘林  杨允菲 《生态学报》2019,39(11):4149-4157
扎龙湿地的芦苇既可形成大面积的单优群落,也可形成不同群落斑块。采用大样本抽样调查与统计分析方法,对湿地内水生生境、湿生生境、旱生生境和盐碱生境芦苇种群分株高度和生物量进行比较。结果表明,6—10月份,4个生境芦苇种群分株高度及生物量均以水生生境最高,盐碱生境最低,水生生境株高为盐碱生境的1.5—2.3倍,分株生物量为2.0—5.1倍,生境间的差异性以及差异序位均相对稳定。4个生境株高生境间变异系数(19.45%—31.56%)均高于生境内变异系数(8.07%—17.61%),分株高度在生境间的可塑性更大;分株生物量中水生生境、湿生生境和盐碱生境3个生境间的变异系数(33.43%—55.61%)均低于生境内变异系数(44.85%—79.82%),分株生物量在生境内的可塑性更大。不同生境条件下芦苇种群分株,在生长和生产上均存在较大的生态可塑性,表现出明显的环境效应,其中土壤含水量是该地区芦苇分株生态可塑性变异的主要驱动因子(R0.80),为正向驱动。  相似文献   

19.
Macaques are found both in broadleaf evergreen forest and in more variable habitats. The former group might be expected to be subject to less variability in their environment and hence to suffer lower rates of density independent mortality. Life history evolution models predict that species in such conditions will have lower rates of development and breeding than those found in more variable habitats where density independent mortality is high. This prediction is tested here by comparing the breeding and development rates of nine species of macaque. Although measures of developmental rate are not found to vary in a predictable way with habitat, measures of breeding rate do correlate with habitat categories used. As predicted, species that are found in more variable habitats tend to have higher birth rates and a higher intrinsic rate of natural increase than do species in more stable, forest habitats. Contrary to prediction selection does not always act to produce an early age at first reproduction in macaques living in seasonal environments. This is discussed with relation to physiological and environmental constraints.  相似文献   

20.
The presence of heritable variation in traits is a prerequisite for evolution. The great majority of heritability (h2) estimates are performed under laboratory conditions that are characterized by low levels of environmental variability. Very little is known about the effect of environmental variability on the estimation of components of quantitative variation, although theoretical extrapolations from lab studies have been attempted. Here we investigate the effects of environmental heterogeneity on variance component estimation using full-sib families of Gryllus pennsylvanicus split between a homogeneous laboratory environment and a more variable field environment. Although large standard errors prevent demonstration of statistically significant differences among h2 of traits measured in the two environments for all but one trait, the values of h2 are, on average, lower in the variable field environment, with a mean reduction of 19%. Developmental time is an exception, exhibiting high levels of additive variance in the field, leading to a higher value of h2 in the variable environment. Underlying the lower field h2 estimates are greater components of environmental variance as expected, as well as lower components of genetic variance. In this study, there is no evidence that the increase in the environmental component of variance in the field is any more important in the reduction of h2 than is the decrease in the additive genetic component. The implications of the relative changes in the two components of variance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号