首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
While screening for Sinorhizobium meliloti Pho regulatory mutants, a transposon mutant was isolated that constitutively expressed higher levels of acid and alkaline phosphatase enzymes. This mutant was also found to form pseudonodules on alfalfa that were delayed in appearance relative to those formed by the wild-type strain, it contained few bacteroids, and it did not fix nitrogen. Sequence analysis of the transposon insertion site revealed the affected gene to have high homology to Lon proteases from a number of organisms. In minimal succinate medium, the mutant strain was found to grow more slowly, reach lower maximal optical density, and produce more extracellular polysaccharide (EPS) than the wild-type strain. The mutant fluoresced brightly on minimal succinate agar containing calcofluor (which binds to EPSI, a constitutively expressed succinoglycan), and gas chromotographic analysis of purified total EPS showed that the glucose-to-galactose ratio in the lon mutant total EPS was 5.0 +/- 0.2 (mean +/- standard error), whereas the glucose-to-galactose ratio in the wild-type strain was 7.1 +/- 0.5. These data suggested that in addition to EPSI, the lon mutant also constitutively synthesized EPSII, a galactoglucan which is the second major EPS known to be produced by S. meliloti, but typically is expressed only under conditions of phosphate limitation. (13)C nuclear magnetic resonance analysis showed no major differences between EPS purified from the mutant and wild-type strains. Normal growth, EPS production, and the symbiotic phenotype were restored in the mutant strain when the wild-type lon gene was present in trans. The results of this study suggest that the S. meliloti Lon protease is important for controlling turnover of a constitutively expressed protein(s) that, when unregulated, disrupts normal nodule formation and normal growth.  相似文献   

3.
The notion of debranching enzyme activity as a participant in starch synthesis is gaining acceptance. Inconsistent reports from mutant analyses implicate either isoamylase or pullulanase as a determinant in amylopectin formation and whether wild-type plants utilize one or the other, or both, of these debranching enzymes in starch synthesis is unclear. Recent results on the su1 mutant in maize suggest that both forms of debranching enzymes might be involved in amylopectin formation. We wished to find out if isoamylase takes part in starch synthesis by comparing isoamylase gene activity under three conditions: (1) during starch accumulation in developing sink tissues; (2) during starch degradation in germinating seeds; (3) in ectopic expression after applying sucrose, a starch precursor. We isolated the gene for barley isoamylase, iso1, and analysed its expression and regulation in germinating seeds, developing endosperm and vegetative tissues, and compared the isoamylase gene expression in sink tissues from three different species. Our results indicate that isoamylase gene activity is involved in starch synthesis in wild-type plants and is modulated by sucrose.  相似文献   

4.
The contribution of beta-lactamase production to beta-lactam antibiotic resistance was examined in an Aeromonas caviae mutant strain, selected in vitro by cefotaxime and derived from a wild-type strain isolated in our laboratory from crude sewage. Both strains produced beta-lactamase. The mutant strain (AC7m) produced beta-lactamase constitutively, in contrast to the parental strain (AC7), which was inducible by cefoxitin. AC7m was regarded as a mutant from AC7, which over-expressed beta-lactamase. The mutant strain showed a remarkable reduction in sensitivity to most of the beta-lactam antibiotics tested, such as (i) aminopenicillins and their combinations with clavulanic acid and sulbactam, (ii) carboxypenicillins, (iii) ureidopenicillins, and (iv) cephalosporins. This strain remained susceptible to ceftazidime, imipenem, and aztreonam. Isoelectric focusing of sonic extracts revealed that both strains AC7 and AC7m shared a common major beta-lactamase band at pI 6.5. The plasmid DNA assays showed that the beta-lactamases expressed by each A. caviae strain were chromosomally encoded. Based on substrate and inhibitor profiles determined in sonic extracts for AC7 and AC7m, the enzymes displayed on isoelectric focusing at pI 6.5 were assigned to chromosomal Group 1 beta-lactamases. Imipenem would therefore be the appropriate choice for therapy of infections caused by A. caviae beta-lactamase over-expressing mutants.  相似文献   

5.
The STA8 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that controls starch biosynthesis. Mutations of STA8 cause a significant reduction in the amount of granular starch produced during nutrient limitation and accumulate phytoglycogen. The granules remaining in sta8 mutants are misshapen, and the abundance of amylose and long chains in amylopectin is altered. Mutations of the STA7 locus, which completely lack isoamylase activity, also cause accumulation of phytoglycogen, although sta8 and sta7 mutants differ in that there is a complete loss of granular starch in the latter. This is the first instance in which mutations of two different genetic elements in one plant species have been shown to cause phytoglycogen accumulation. An analytical procedure that allows assay of isoamylase in total extracts was developed and used to show that sta8 mutations cause a 65% reduction in the level of this activity. All other enzymes known to be involved in starch biosynthesis were shown to be unaffected in sta8 mutants. The same amount of total isoamylase activity (approximately) as that present in sta8 mutants was observed in heterozygous triploids containing two sta7 mutant alleles and one wild-type allele. This strain, however, accumulates normal levels of starch granules and lacks phytoglycogen. The total level of isoamylase activity, therefore, is not the major determinant of whether granule production is reduced and phytoglycogen accumulates. Instead, a qualitative property of the isoamylase that is affected by the sta8 mutation is likely to be the critical factor in phytoglycogen production.  相似文献   

6.
beta-Hydroxynorvaline (alpha-amino-beta-hydroxyvaleric acid)-resistant mutants of Serratia marcescens deficient in both threonine dehydrogenase and threonine deaminase were isolated and characterized. One of the mutants, strain HNr21, lacked feedback inhibition of threonine-sensitive aspartokinase and homoserine dehydrogenase, was repressed for the two enzymes, and produced 11 mg of threonine per ml of medium containing a limiting amount of isoleucine. The other mutant, strain HNr59, was constitutively derepressed for aspartokinase and homoserine dehydrogenase. Its kinase was sensitive to feedback inhibition, but its dehydrogenase was insensitive to feedback inhibition. This strain produced 5 mg of threonine per ml of medium containing either a limiting or an excess amount of isoleucine. Diaminopimelate auxotrophs derived from strain HNr59 produced more threonine (13 mg/ml) than the parent strain. However, similar auxotrophs derived from strain HNr21 produced the same amount of threonine as that produced by the parent strain.  相似文献   

7.
Threonine production by regulatory mutants of Serratia marcescens.   总被引:7,自引:4,他引:3       下载免费PDF全文
beta-Hydroxynorvaline (alpha-amino-beta-hydroxyvaleric acid)-resistant mutants of Serratia marcescens deficient in both threonine dehydrogenase and threonine deaminase were isolated and characterized. One of the mutants, strain HNr21, lacked feedback inhibition of threonine-sensitive aspartokinase and homoserine dehydrogenase, was repressed for the two enzymes, and produced 11 mg of threonine per ml of medium containing a limiting amount of isoleucine. The other mutant, strain HNr59, was constitutively derepressed for aspartokinase and homoserine dehydrogenase. Its kinase was sensitive to feedback inhibition, but its dehydrogenase was insensitive to feedback inhibition. This strain produced 5 mg of threonine per ml of medium containing either a limiting or an excess amount of isoleucine. Diaminopimelate auxotrophs derived from strain HNr59 produced more threonine (13 mg/ml) than the parent strain. However, similar auxotrophs derived from strain HNr21 produced the same amount of threonine as that produced by the parent strain.  相似文献   

8.
Regulation of myo-inositol catabolism in Aerobacter aerogenes   总被引:1,自引:0,他引:1       下载免费PDF全文
A mutant of Aerobacter aerogenes produces constitutively the series of enzymes that mediates the degradation of myo-inositol and which in the wildtype strain is inducible. When grown on l-histidine, the mutant forms the enzymes at a level approximately three times as high as that seen in the induced wild type. The enzymes appear to be coordinately regulated and are sensitive to catabolite repression. Unless repressed, the synthesis of these enzymes markedly retards the growth of the mutant.  相似文献   

9.
10.
A mutant of Pseudomonas sp. strain HBP1, originally isolated on 2-hydroxybiphenyl, was selected for the ability to grow on 2-propylphenol as the sole carbon and energy source. In the mutant strain, which was designated as Pseudomonas sp. strain HBP1 Prp, the cellular induction mechanism involved in the synthesis of the NADH-dependent monooxygenase is changed. 2-Propylphenol, which is known to be a substrate of the monooxygenase, does not induce formation of the monooxygenase in the wild type but does have an induction effect in the mutant strain. Furthermore, in contrast to the wild type, mutant strain HBP1 Prp constitutively produces a small amount of monooxygenase and metapyrocatechase. The enzymes from strain HBP1 Prp catalyzing the first three steps in the degradation of 2-propylphenol--the NADH-dependent monooxygenase, the metapyrocatechase, and the meta fission product hydrolase--were partially purified, and their activities were measured. The product of the monooxygenase activity was identified by mass spectrometry as 3-propylcatechol. The metapyrocatechase used this compound as a substrate and produced a yellow meta fission product that was identified by mass spectrometry as 2-hydroxy-6-oxo-nona-2,4- dienoate. Butyrate could be detected as a product of the meta fission product hydrolase in crude cell extract of 2-propylphenol-grown cells, as well as an intermediate in culture broths during growth on 2-propylphenol. All three enzymes expressed highest activities for the metabolites of the degradation of 2-hydroxybiphenyl.  相似文献   

11.
Synthesis of enzymes of the 4-hydroxyphenylacetate meta-cleavage pathway was studied in Pseudomonas putida wild-type strain P23X1 (NCIB 9865) and mutant strains which had either structural or regulatory gene mutations. Induction studies with mutant strains each defective in an enzyme of the pathway showed that 4-hydroxyphenylacetate induced the hydroxylase and that 3,4-dihydroxyphenylacetate induced the 2,3-oxygenase, aldehyde dehydrogenase, isomerase, decarboxylase, and hydratase. This showed that the hydroxylase structural gene does not exist in an operon that contains any other structural gene of this meta pathway. Studies of mutant strains that synthesized constitutively the 2,3-oxygenase and subsequent enzymes suggested that the regulation of synthesis of these enzymes was coincident, and, in such strains, the hydroxylase was inducible only. Observations made with a putative polarity mutant that lacked 2,3-oxygenase activity suggested that the structural genes encoding this enzyme and subsequent enzymes of the pathway exist in the same operon. Studies of a regulatory mutant strain that was defective in the induction of the 2,3-oxygenase and subsequent enzymes suggest that the 2,3-oxygenase operon is under positive control.  相似文献   

12.
A strain of Pseudomonas sp., SMP1, isolated from a soil sample collected in the Monterotondo area (Rome), secreted isoamylase activity into the culture medium. The enzyme was purified and optimal reaction and stability conditions were determined by varying pH and temperature. The chemico-physical properties of the enzyme were similar to those of the isoamylase purified in Japan more than 20 years ago from 'Pseudomonas amyloderamosa' strain SB15. A genomic library of SMP1 was prepared in Escherichia coli using pUC12 as vector. Two isoamylase-producing colonies were identified out of 6300 screened. The hybrid plasmids isolated from the two clones showed common restriction patterns. The chromosomal portion of one of these plasmids (pSM257) was completely sequenced. Comparison between the deduced amino acid sequence of the isoamylase and the published sequences of other amylolytic enzymes showed the presence of conserved domains.  相似文献   

13.
A model for the study of experimental evolution is provided by the novel metabolic system responsible for the progressive utilization of l-1,2-propanediol by mutants of Escherichia coli (strains 3 and 430). In these mutant strains, propanediol oxidoreductase, which serves as l-lactaldehyde reductase in fucose fermentation by wild-type cells, became a key enzyme for aerobic catabolism of propanediol. In the wild-type strain (strain 1), the enzyme is inducible only anaerobically; in strains 3 and 430, the enzyme is synthesized constitutively even in the presence of air. The propanediol oxidoreductase from all three strains was purified to homogeneity by the same procedure. The enzyme of strain 3 clearly differed from that of strain 1 in several respects: Km and V in both directions of the reaction, energy of activation, thermal stability, pH optimum and substrate specificity. However, no difference in any of the above characteristics was found between the enzymes of strains 3 and 430. All three enzymes presented the same electrophoretic mobility. According to immunological data, all three strains differed in their intracellular enzyme level.  相似文献   

14.
Mutants of Escherichia coli K-12 which grow on butyrate and valerate were studied with respect to uptake of these substrates. To utilize short-chain and medium-chain fatty acids, E. coli must synthesize the beta-oxidation enzymes constitutively. In addition, growth on the C(4) and C(5) acids requires a second mutation which permits entry of these substrates. At pH 5, both in the parent and mutant strains, butyrate and valerate penetrate as the undissociated acids but appear not to be activated and thus inhibit growth. At pH 7, the parent strain is not permeable to the anions, whereas the mutant concentrates these substrates. There appear to be two components of the uptake system, a nonspecific diffusion component and an energy-linked activating enzyme. Two mutant types which take up short-chain fatty acids are described. One synthesizes the uptake system constitutively and is inhibited by 4-pentenoate when cultured on acetate. In the other, the uptake system is inducible, and the strain is pentenoate-resistant when grown on acetate but pentenoate-sensitive when cultured on butyrate or valerate.  相似文献   

15.
Lee DY  Park YC  Kim HJ  Ryu YW  Seo JH 《Proteomics》2003,3(12):2330-2338
Candida magnoliae which has been newly isolated from honey comb is an osmotolerant yeast to produce erythritol as a major product. Erythritol is a noncariogenic, low calorie sweetener and safe for diabetics. Strain development by chemical mutation to obtain the improved erythritol yield and productivity relative to the parental strain made it necessary to elucidate the physiological differences between the wild and mutant strains. Proteomic analyses of C. magnoliae wild and mutant strains with two-dimensional gel electrophoresis and nanoelectrospray mass spectrometry were carried out to identify intracellular proteins and to estimate the effects of newly characterized metabolic enzymes on the yeast cell growth and erythritol production. Most of the molecular mass of intracellular proteins were distributed in the range of pI 4-8 and molecular mass of approximately 130 kDa. Six out of nine protein spots expressed at different levels between the wild and mutant strains were analyzed with nanoelectrospray tandem mass spectrometry and identified by comparing amino acid sequences with the National Center for Biotechnology Information and Saccharomyces Genome Databases. Except for Ygr086cp, these proteins were believed to be the metabolic enzymes involved in the citric acid cycle (citrate synthase, succinyl-CoA ligase and fumarase) and the glycolysis pathway (pyruvate decarboxylase and enolase). Up-regulated enzymes in the citric acid cycle could explain high growth of the C. magnoliae mutant strain owing to the increased NADH and ATP formation. Down-regulated enolase and up-regulated fumarase in the mutant strain seemed to play a role in the improved bioconversion of erythrose-4-phosphate to erythritol compared with the wild strain.  相似文献   

16.
Escherichia coli K12 cannot grow on D-arabitol, L-arabitol, ribitol or xylitol (Reiner, 1975). Using a mutant of E. coli K12 (strain 3; Sridhara et al., 1969) that can grow on L-1,2-propanediol, a second-stage mutant was isolated which can utilize D-arabitol as sole source of carbon and energy for growth. D-Arabitol is probably transported into the bacteria by the same system as that used for the transport of L-1,2-propanediol. The second-stage mutant constitutively synthesizes a new dehydrogenase, which is not present in the parent strain 3. This enzyme, whose native substrate may be D-galactose, apparently dehydrogenates D-arabitol to D-xylulose, and its structural gene is located at 68.5 +/- 1 min on the E. coli genetic map. D-Xylulose is subsequently catabolized by the enzymes of the D-xylose metabolic pathway.  相似文献   

17.
Pseudomonas aeruginosa is considered a strict aerobe that possesses several enzymes important in the disposal of toxic oxygen reduction products including iron- and manganese-cofactored superoxide dismutase and catalase. At present, the nature of the regulation of these enzymes in P. aeruginosa Is not understood. To address these issues, we used two mutants called A4 and C6 which express altered Fur (named for ferric uptake regulation) proteins and constitutively produce the siderophores pyochelin and pyoverdin. Both mutants required a significant lag phase prior to log-phase aerobic growth, but this lag was not as apparent when the organisms were grown under microaerobic conditions. The addition of iron salts to mutant A4 and, to a greater extent, C6 cultures allowed for an increased growth rate under both conditions relative to that of bacteria without added iron. Increased manganese superoxide dismutase (Mn-SOD) and decreased catalase activities were also apparent in the mutants, although the second catalase, KatB, was detected in cell extracts of each fur mutant. Iron deprivation by the addition of the iron chelator 2,2'-dipyridyl to wild-type bacteria produced an increase in Mn-SOD activity and a decrease in total catalase activity, similar to the fur mutant phenotype. Purified wild-type Fur bound more avidly than mutant Fur to a PCR product containing two palindromic 19-bp "iron box" regions controlling expression of an operon containing the sodA gene that encodes Mn-SOD. All mutants were defective in both ferripyochelin- and ferripyoverdin-mediated iron uptake. Two mutants of strain PAO1, defective in pyoverdin but not pyochelin biosynthesis, produced increased Mn-SOD activity. Sensitivity to both the redox-cycling agent paraquat and hydrogen peroxide was greater in each mutant than in the wild-type strain. In summary, the results indicate that mutations in the P. aeruginosa fur locus affect aerobic growth and SOD and catalase activities in P. aeruginosa. We postulate that reduced siderophore-mediated iron uptake, especially that by pyoverdin, may be one possible mechanism contributing to such effect.  相似文献   

18.
K Ochi 《Journal of bacteriology》1987,169(8):3608-3616
I investigated the significance of the intracellular accumulation of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and of the coordinated decrease in the GTP pool for initiating morphological and physiological differentiation of Streptomyces griseus, a streptomycin-producing strain. In solid cultures, aerial mycelium formation was severely suppressed by the presence of excess nutrients. However, decoyinine, a specific inhibitor of GMP synthetase, enabled the cells to develop aerial mycelia in the suppressed cultures at concentrations which only partially inhibited growth. A factor (2S-isocapryloyl-3S-hydroxymethyl-gamma-butyrolactone) added exogenously had no such effect. Decoyinine was also effective in initiating the formation of submerged spores in liquid culture. The ability to produce streptomycin did not increase but decreased drastically on the addition of decoyinine. This sharp decrease in streptomycin production was accompanied by a decrease in intracellular accumulation of ppGpp. A relaxed (rel) mutant was found among 25 thiopeptin-resistant isolates which developed spontaneously. The rel mutant had a severely reduced ability to accumulate ppGpp during a nutritional shift-down and also during postexponential growth and showed a less extensive decrease in the GTP pool than that in the rel+ parental strain. The rel mutant failed to induce the enzymes amidinotransferase and streptomycin kinase, which are essential for the biosynthesis of streptomycin. The abilities to form aerial mycelia and submerged spores were still retained, but the amounts were less, and for both the onset of development was markedly delayed. The decreased ability to produced submerged spores was largely restored by the addition of decoyinine. This was accompanied by an extensive GTP pool decrease. The rel mutant produced A factor normally, indicating that synthesis of A factor is controlled neither by ppGpp nor by GTP. Conversely, a mutant defective in A-factor synthesis accumulated as much ppGpp as did the parental strain. It was concluded that morphological differentiation of S. griseus results from a decrease in the pool of GTP, whereas physiological differentiation results from a more direct function of the rel gene product (ppGpp). It is also suggested that A factor may render the cell sensitive to receive and respond to the specified signal molecules, presumably ppGpp (for physiological differentiation) or GTP (for morphological differentiation).  相似文献   

19.
20.
In order to improve the productivity of raw cassava starch-digestive glucoamylase of Rhizopus sp. MB46 in a liquid culture, a mutant strain, AF-1, which is resistant to 2-deoxyglucose, was derived. The mutant strain produced glucoamylase in the presence of 0.5% glucose though the parent strain did not. With a rice bran liquid medium the productivity was over 2-times that of the wild type strain. A rice bran liquid medium supplemented with β-cyclodextrin was also effective for glucoamylase production. Other maceration enzymes were also produced at a higher level with mutant strain AF-1 than with the wild type strain in a liquid culture as well as in a solid culture. The elution patterns of these enzymes on CM-cellulose column chromatography were principally the same with both strains except for glucoamylase. When 10% of raw cassava starch and cassava waste were digested with the culture filtrate of mutant strain AF-1, glucose was produced in 7% after 60-h incubation and 3.2% after 48-h incubation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号