首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The culture medium of Pseudomonas BAL 31 contains endonuclease activities which are highly specific for single-stranged DNA and for the single-stranded or weakly hydrogen-bonded regions in supercoiled closed circular DNA. Exposure of nicked DNA to the culture medium results in cleavage of the strang opposite the sites of preexisting single-strand scissions. At least some of the linear duplex molecules derived by cleavage of supercoiled closed circular molecules contain short single-stranded ends. Single-strand scissions are not introduced into intact, linear duplex DNA or unsupercoiled covalently closed circular DNA. Under these same reaction conditions, 0X174 phage DNA is extensively degraded and PM2 form I DNA is quantitatively converted to PM2 form III linear duplexes. Prolonged exposure of this linear duplex DNA to the concentrated culture medium reveals the presence of a double-strand exonuclease activity that progressively reduces the average length of the linear duplex. These nuclease activities persist at ionic strengths up to 4 M and are not eliminated in the presence of 5% sodium dodecyl sulfate. Calcium and magnesium ion are both required for optimal activity. Although the absence of magnesium ion reduces the activities, the absence of calcium ion irreversibly eliminates all the activities.  相似文献   

2.
Deoxyribonucleic acid (DNA) from the covalently closed circular DNA molecules of Pseudomonas phage PM2 was found to enter normally transformable cells of Streptococcus pneumoniae as readily as linear bacterial DNA. In a mutant of S. pneumoniae that lacks a membrane nuclease and is defective in DNA entry, as many molecules of PM2 DNA as of linear DNA were bound on the outside of cells at equivalent DNA concentrations. Bound DNA suffered single-strand breaks, but circular DNA with preexisting breaks was bound no better than closed circles. In the presence of divalent cations, DNA bound to cells of a leaky nuclease mutant showed double-strand breaks. At least the majority of PM2 DNA that entered normal cells was single stranded. These results are consistent with a mechanism for DNA entry in which DNA is first nicked on binding, then a double-strand break is formed by cleavage of the complementary strand, and continued processive action of the membrane nuclease facilitates entry of the originally nicked strand. Although the bulk of circular donor DNA appeared to enter in this way, the results do not exclude entry of a small amount of donor DNA in an intact form.  相似文献   

3.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):289-302
Form II PM2 DNA, which contained bleomycin-mediated single-strand breaks, was purified and treated with the extracellular endonuclease from Alteromonas BAL 31. This enzyme cleaves the phosphodiester backbone opposite a single-strand break to yield a double-strand break. The locations of these double-strand breaks were determined relative to the cleavage sites produced by the restriction enzyme HindIII. The experimental procedure was as follows. Form I PM2 DNA was treated with bleomycin to produce alkali-labile bonds. These were hydrolyzed by alkali treatment and the DNA, now containing single-strand breaks, was purified and treated with the BAL 31 enzyme and the HindIII enzyme to determine the positions of the original alkali-labile bonds. It was found that the single-strand breaks and alkali-labile bonds were introduced at preferred sites on the PM2 genome, since electrophoretic analyses of the DNA after the HindIII digestion revealed DNA bands of discrete sizes. The molecular weights of the DNA fragments produced by these treatments indicate that single-strand breaks and alkali-labile bonds occur at the same sites as those previously determined for direct double-strand scissions introduced by bleomycin at neutral pH. Some of the specific sites of double-strand scissions mediated by bleomycin at neutral pH (Lloyd et al., 1978b) are also shown here to be relatively more reactive than other sites when the DNA contains superhelical turns.  相似文献   

4.
L F Povirk  C W Houlgrave 《Biochemistry》1988,27(10):3850-3857
Bleomycin and neocarzinostatin induce modified apurinic/apyrimidinic (AP) sites by oxidation of the sugar moiety in DNA. In order to quantitatively assess the susceptibility of these lesions to repair endonucleases, drug-treated 3H-labeled colE1 DNA was mixed with 14C-labeled heat-depurinated DNA, and endonuclease-susceptible sites in the mixture were titrated with various AP endonucleases or with polyamines. Single- and double-strand breaks were quantitated by determining the fractions of supercoiled, nicked circular, and linear molecules. Exonuclease III and endonucleases III and IV of Escherichia coli, as well as putrescine, produced a nearly 2-fold increase in single-strand breaks in bleomycin-treated DNA, indicating cleavage of drug-induced AP sites. The bleomycin-induced AP sites were comparable to heat-induced sites in their sensitivity to E. coli endonucleases III and IV but were cleaved by exonuclease III only at high concentrations. Bleomycin-induced AP sites were much more sensitive to cleavage by putrescine than heat-induced sites. Treatment with putrescine or very high concentrations of endonuclease III also increased the number of double-strand breaks in bleomycin-treated DNA, suggesting a minor class of lesion consisting of an AP site accompanied by a closely opposed break in the complementary strand. These complex lesions were resistant to cleavage by endonuclease IV. However, when colE1 DNA was treated with neocarzinostatin, subsequent treatment with putrescine, endonuclease IV, or very high concentrations of endonuclease III produced a dramatic increase in double-strand breaks but no detectable increase in single-strand breaks. These results suggest that virtually all neocarzinostatin-induced AP sites are accompanied by a closely opposed strand break.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The extracellular nucleases from Alteromonas espejiana BAL 31 can catalyze the endonucleolytic and/or exonucleolytic hydrolysis of duplex DNA in response to a variety of alterations, either covalent or noncovalent, in DNA structure. The nuclease can exist as at least two kinetically and molecularly distinct protein species. The two species that have been studied, called the 'fast' (F) and 'slow' (S) nucleases, both readily convert negatively supercoiled DNAs to linear duplex molecules and accomplish this conversion through the formation of a circular duplex intermediate containing usually a single interruption in one strand. It is further shown that most of these intermediates contain gaps arising from the removal in a processive manner of one or more nucleotide residues after the introduction of the initial strand break (nick). Considering only the intermediates with gaps, the average number of missing residues is 6.3 +/- 0.5 and 2.8 +/- 0.3, respectively, for DNA acted upon by the F and S enzymes independently of the extent of conversion of supercoiled DNA. The nicks and gaps are bounded by 3'-hydroxyl and 5'-phosphoryl termini. When singly nicked circular DNA is used as the substrate, conversion to the linear duplex form occurs predominantly through a gapped circular intermediate with the same average numbers, within experimental error, of missing nucleotides for the respective nuclease species as found when supercoiled DNA is the substrate. The conversion to linear duplex DNA is much slower when nicked circular DNA is the substrate compared to that found when supercoiled DNA is the starting material.  相似文献   

6.
We describe a novel system for two dimensional electrophoresis at neutral and alkaline pH for determining the double-stranded and single-stranded lengths of DNA. With this system we analysed the mode of micrococcal nuclease digestion of DNA in cellular and SV40 viral chromatin and of supercoiled SV40 DNA. The enzyme reaction occurred in two steps : the enzyme first introduced single-strand breaks, then converted these to double-strand breaks by an adjacent cleavage on the opposite strand. Digestion of cellular chromatin DNA occurred by a similar mechanism. Chromatin fragments produced by limited micrococcal nuclease action contained many single-strand breaks, which may be important when this method is used to prepare chromatin fragments for biochemical and biophysical studies. Nucleosome monomer to tetramer produced at later stages of digestion contained few if any single-strand breaks.  相似文献   

7.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):303-316
Electron microscopy of purified full-length linear duplex molecules produced by bleomycin reaction with PM2 DNA revealed low frequencies of closed circular duplex molecules as well as linear duplex molecules with opposed ends (cyclized molecules which have dissociated to yield a gap between the termini). The occurrence of these latter forms indicates that double-strand scissions produced by bleomycin reaction consist of two single-strand scissions which are physically staggered on the complementary strands. Analysis of the temperature dependence for cyclization led to the estimate that an average of 1.7 +/- 0.44 base-pairs (2.6 +/- 0.5 base pairs without base-stacking energies) occur between the staggered breaks. The reassociated termini cannot be ligated with T4 ligase. When PM2 DNA was fragmented at several sites within each molecule, circular duplexes and linear duplexes with opposed ends with a range of sizes from 350 base pairs up to full-length PM2 DNA were observed. Analysis of the frequency distribution of lengths of these fragments indicates that most, if not all, of the specific sites for bleomycin-directed double-strand scissions in PM2 DNA contain representatives of the same two base single-stranded termini.  相似文献   

8.
The carcinogen chromate is efficiently taken up and reduced to chromium(III) compounds by various biological systems. To test the possible DNA damage induced in the course of chromium(VI) reduction, we used a combination of chromate with the reductant glutathione (GSH) as well as a green complex of chromium(V), which is formed in the reaction of chromate with GSH. The combination of chromate and glutathione was found to cause single-strand breaks in supercoiled circular DNA of the bacteriophage PM2. The green chromium(V) complex Na4(GSH)4Cr(V).8H2O, prepared from chromate and glutathione, also cleaved supercoiled PM2 DNA. No DNA-degrading effects were observed with either chromate or the final product of the reaction with GSH, a purple anionic chromium(III) GSH complex. The nature of the buffering agents revealed a strong influence on the extent of DNA strand breaks produced by chromate and GSH. A variation of the GSH concentration in the reaction with chromate and PM2 DNA, performed in sodium phosphate-buffered solutions showed an initial increase in the number of strand breaks at GSH concentrations up to 1 mM followed by a decline at higher GSH concentrations. Since neither chromate, when administered individually, nor the final product of chromium(VI) reduction, the purple chromium(III) GSH complex, produced any detectable DNA cleavage, the critical steps leading to DNA strand breaks occur in the course of the conversion of chromium(VI) to chromium(III) by GSH, the most abundant intracellular low molecular thiol. Moreover, the demonstration that DNA cleavage is induced in the presence of the chromium(V) complex identifies chromium(V) as the oxidation state of the metal, which is involved in the steps leading to DNA-damaging effects of chromate.  相似文献   

9.
An endonuclease purified from germinating pea (Pisum sativum) seeds has been shown to catalyze the hydrolysis of heat-denatured single-stranded DNA. Since P. sativum endonuclease shows appreciable activity in the presence of DNA destabilizing agents and, unlike many similar endonucleases, significant activity at neutral pH, it is a potentially valuable tool for studies of the secondary structure of nucleic acids. The residual hydrolysis of duplex DNA is directed towards partially denatured, A,T-rich areas in native DNA. The rate of hydrolysis of deoxypolynucleotides was in the order poly(dT) greater than denatured DNA greater than poly(dA) greater than poly(dA-dT) = native DNA. Neither poly(dC), poly(dG) nor poly(dC).poly(dG) were attacked by the enzyme. Supercoiled, covalently closed circular phage PM2 form I DNA is converted to singly hit nicked circular form II and doubly hit linear from III duplexes. Prolonged treatment with enzyme does not further cleave the linear form III DNA. Addition of increasing concentrations of NaCl in the incubation mixture suppresses the conversion of form I to form II, but not the conversion of form II to form III, which is enhanced with the increasing ionic strength. The enzymatically relaxed circular form, I degree, obtained by unwinding of supercoiled DNA with a DNA-relaxing protein, is resistant to the action of the enzyme. Molecules with intermediate superhelix densities do not serve as substrates. The sites of cleavage of P. sativum endonuclease in PM2 DNA occur within regions that are readily denaturable in a topologically constrained superhelical molecule.  相似文献   

10.
Light-induced nicking of deoxyribonucleic acid by cobalt(III) bleomycins   总被引:1,自引:0,他引:1  
C H Chang  C F Meares 《Biochemistry》1982,21(25):6332-6334
The anticancer drug bleomycin is a glycopeptide that causes strand scission of DNA both in vivo and in vitro. Cleavage of DNA by bleomycin has been studied extensively in vitro, with the findings that ferrous ion and molecular oxygen must be present and that addition of reducing agents greatly enhances the reaction. To date, only iron has been shown to be an effective metal cofactor for the cleavage of DNA by bleomycin. Here it is reported that two stable cobalt(III) complexes of bleomycin are strikingly effective in causing single-strand breaks (nicks) in supercoiled DNA in the presence of ultraviolet or visible radiation. For example, 366-nm light from an 18-W long-wavelength mercury lamp for 1 h causes 10(-6) M cobalt(III) bleomycin to completely convert supercoiled phi X174 DNA (10(-8) M DNA, 10(-4) M phosphate) into the nicked circular form. Furthermore, numerous alkali-labile sites are produced on the DNA during this treatment. The observed reactions are not caused by adventitious iron, and they occur only in the presence of cobalt(III) bleomycin and light.  相似文献   

11.
The dependence of the initial rate of introduction of the first single-chain scission (initial nicking rate) into covalently closed circular phage PM2 DNA by the single strand-specific nuclease from Alteromonas espejiana BAL 31 upon the superhelix density (sigma) of the DNA has been examined. The initial nicking rate decreases with decreasing numbers of negative superhelical turns (decreasing values of -sigma), which behavior is characteristic of other single strand-specific nucleases as reported earlier. In contrast to earlier work, the initial nicking rates of closed circular DNAs by the action of the Alteromonas nuclease have been shown to be readily measurable at values of -sigma as low as 0.02. However, even at the elevated concentrations of enzyme and extended digestion periods required to cause nicking at an appreciable rate at near-zero values of sigma, closed circular DNA containing very few superhelical turns (form IO DNA) is not cleaved at a detectable rate. When this DNA is rendered positively supercoiled by ethidium bromide (EtdBr), it is not affected by the nuclease until very high positive values of sigma are attained, at which low rates of cleavage can be detected at elevated enzyme concentrations. The effects of EtdBr on the enzyme activity have been tested and are entirely insufficient to allow the interpretation of zero nicking rates as the result of inhibition of the nuclease activity by the dye. Positively supercoiled DNA is concluded not to contain regions having significant single-stranded character until values of sigma are reached which are very much higher than the values of -sigma for which negatively supercoiled DNAs behave as if they contain unpaired or weakly paired bases.  相似文献   

12.
In chimpanzee hepatitis B virus (HBV) carriers, the mechanism of viral persistence has been examined by analyzing viral DNA molecules in liver and serum. Chimpanzee liver DNA contained two extrachromosomal HBV DNA molecules migrating on hybridization blots at 4.0 kb and 2.3 kb. There was no evidence for integration of HBV DNA into the host genome. The extrachromosomal molecules were distinct from Dane particle DNA and were converted to linear 3.25 kb full-length double-stranded HBV DNA on digestion with Eco RI. Nucleases S1 and Bal 31 converted "2.3 kb" HBV DNA to 3.25 kb via an intermediate of "4.0 kb" apparent length. The HBV DNA molecule that migrated at 2.3 kb represents a supercoiled form I of the HBV genome, and the molecule that migrated at 4.0 kb represents a full-length "nicked," relaxed circular form II. Evidence for supercoiled HBV DNA in serum Dane particles was obtained by production of form II molecules upon digestion with nuclease S1 or Bal 31. It is proposed that most Dane particles represent interfering noninfectious virus containing partially double-stranded DNA circles and that particles containing supercoiled HBV DNA may represent infectious hepatitis B virus.  相似文献   

13.
To determine the yield of radiation-induced single-strand, double-strand and potential breaks (breaks which are converted into actual breaks by alkali or heat treatment) oxygenated aqueous solutions of phi X174 supercoiled circular double-stranded (RFI) DNA were irradiated with increasing doses of gamma-irradiation and subjected to electrophoresis on agarose gels both before and after heat treatment. A complete separation was obtained of RFI, RFII (relaxed circle due to one or more single-strand breaks) and RFIII (linear DNA due to one double-strand break). A computer-assisted spectrophotometric procedure was developed, which enabled us to measure very accurately the amount of DNA present in the three DNA fractions. The quantitative changes of each fraction of DNA with dose could be fitted to a straightforward statistical model, which described the dose-dependent formation of the different types of breaks and from which the D37-values of single-strand, potential single-strand and double-strand breaks could be calculated to be 0.42 +/- 0.02, 1.40 +/- 0.25 and 57 +/- 36 Gy respectively. Potential double-strand breaks were not formed significantly under our conditions. In addition the maximum distance between two independently introduced single-strand breaks in opposite strands resulting in a double-strand break could be determined. The values before and after heat treatment are shown to be 29 +/- 6 and 102 +/- 13 nucleotides, respectively.  相似文献   

14.
The molecular defect in DNA repair caused by ssb mutations (single-strand binding protein) was studied by analyzing DNA synthesis and DNA double-strand break production in UV-irradiated Escherichia coli delta uvrB strains. The presence of the ssb-113 mutation produced a large inhibition of DNA synthesis and led to the formation of double-strand breaks, whereas the ssb-1 mutation produced much less inhibition of DNA synthesis and fewer double-strand breaks. We suggest that the single-strand binding protein plays an important role in the replication of damaged DNA, and that it functions by protecting single-stranded parental DNa opposite daughter-strand gaps from nuclease attack.  相似文献   

15.
In a cell-free system, the anticancer anthracycline antibiotic adriamycin was able to convert purified covalently closed circular, superhelical, form I bacteriophage PM2 DNA to relaxed circular form II DNA in the presence of either sodium borohydride (NaBH4), NADPH cytochrome P-450 reductase or beta-NADH dehydrogenase isolated from myocardial cells. There was no detectable increase in the amount of form III linear duplex DNA formed during the reaction even at high drug concentrations. Less drug was required for the conversion of form I to form II DNA in the presence of the enzymic reducing agents than in the presence of NaBH4. Form II DNA, prepared by irradiation using a Cs-137 source, was not degraded to form III linear duplex DNA. However, form I0 DNA, covalently closed circular DNA without superhelical turns, freshly prepared using topoisomerase I, was converted to form II DNA similar to the conversion of superhelical form I to form II DNA. Again, no increase in the amount of form III linear duplex DNA could be detected.  相似文献   

16.
Brief exposure of covalently closed circular duplex PM2 DNA to low concentrations of the clinical bleomycin mixture (Blenoxane) resulted in specific fragmentation of the genome that does not depend on the presence of superhelical turns. The double-strand breaks are in fact produced at several discrete sites on the PM2 genome but frequently occurring near the HpaII restriction endonuclease cleavage site. Initial rates of formation of nicked circular and linear duplex PM2 DNAs are reduced to different extents as the ionic strength of the reaction is increased. Increasing ionic strength is most effective in reducing the initial rate and overall yield of apparent double-strand scissions compared with single-strand scissions in the bleomycin-treated PM2 DNA.  相似文献   

17.
Excision repair of ultraviolet damage in human fibroblasts was partially inhibited by drugs that block DNA polymerases alpha or beta (cytosine arabinoside, aphidicolin and dideoxythymidine) causing a reduction in unscheduled synthesis and an accumulation of single-strand breaks. The strand breaks accumulated in the presence of aphidicolin could be resealed within 30 min after removal of the drug, but those accumulated by cytosine arabinoside took many hours. Digestion of repaired DNA with exonuclease III or S1 nuclease revealed that even the highest concentration of polymerase inhibitors, singly or in combination, that produced maximal accumulation of single-strand breaks only blocked 37-86% of repair sites. Use of single-strand break frequencies to measure the number of repair events can therefore be in error by as much as a factor of 3. The blocked patches with free 3'OH termini were, on average, 22% of normal length, corresponding to between 6 and 17 bases (assuming a normal patch of 25-75 bases in length). Patches that remained unsealed in vivo were also resistant to sealing by T4 ligase in vitro. The data are more consistent with a mechanism of repair in which long single-strand gaps are first made by excision enzymes and subsequently filled in by DNA polymerase alpha. Strand displacement or nick translation mechanisms seem unlikely.  相似文献   

18.
We investigated the reactions of substituted aryl radicals and aryl cations derived from arenediazonium ions and their ability to cause cleavage of supercoiled DNA and their tendency toward free radical or cation formation in the presence and absent of copper (I) chloride. It was found that the substituted arenediazonium salts can cleave supercoiled DNA to the open circular form II DNA and linear form III DNA. Results methodical studies indicate that both carbon-centered radicals and aryl cations participate in the cleavage pathways.  相似文献   

19.
Both in linear T2 DNA, analyyzed by velocity sedimentation, and in supercoiled Col EL DNA, analyzed by gel electrophoresis, the number of double-strand breaks produced by bleomycin was directly propotional to the number of single-strand breaks and was far greater than the number expected from random coincidence of single-strand breaks, suggesting that the bleomycin-induced double-strand breaks occur as an independent event. In Col EL DNA, at least twice as many single-strand breaks were found under alkaline assay conditions as were found under neutral conditions, showing the production of alkaline-labile bonds by bleomycin.  相似文献   

20.
From a structural perspective, the factors controlling and the mechanisms underlying the toxic effects of ionizing radiation remain elusive. We have studied the consequences of superhelical/torsional stress on the magnitude and mechanism of DSBs induced by low-energy, short-range, high-LET Auger electrons emitted by (125)I, targeted to plasmid DNA by m-[(125)I]iodo-p-ethoxyHoechst 33342 ((125)IEH). DSB yields per (125)I decay for torsionally relaxed nicked (relaxed circular) and linear DNA (1.74+/-0.11 and 1.62+/-0.07, respectively) are approximately threefold higher than that for torsionally strained supercoiled DNA (0.52+/-0.02), despite the same affinity of all forms for (125)IEH. In the presence of DMSO, the DSB yield for the supercoiled form remains unchanged, whereas that for nicked and linear forms decreases to 1.05+/-0.07 and 0.76+/-0.03 per (125)I decay, respectively. DSBs in supercoiled DNA therefore result exclusively from direct mechanisms, and those in nicked and linear DNA, additionally, from hydroxyl radical-mediated indirect effects. Iodine-125 decays produce hydroxyl radicals along the tracks of Auger electrons in small isolated pockets around the decay site. We propose that relaxation of superhelical stress after radical attack could move a single-strand break lesion away from these pockets, thereby preventing further breaks in the complementary strand that could lead to DSBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号