首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A histochemical technique for the localization of adenylate cyclase activity has been applied to the extensor-tibiae muscle of the hindleg of the locust, Schistocerca gregaria to localise the sites of action of the modulatory compounds octopamine and proctolin. Octopamine-sensitive adenylate cyclase activity can be demonstrated in fast and intermediate type muscle fibres but not in the limited number of purely slow muscle fibres (3-6) in the fan region at the proximal end of the muscle. In contrast the latter fibres are the only ones in the muscle to exhibit proctolin-sensitive adenylate cyclase activity. In both cases the bulk of the reaction product is localised in the sarcoplasmic reticulum component of the dyads, with lesser amounts occurring beneath the sarcolemmal membrane, in the non-dyad sarcoplasmic reticulum and in the T-tubule system. The results are consistent with physiological data suggesting that proctolin, but not octopamine, mediates its effects on the myogenic rhythm of contraction and relaxation in this muscle by changing the levels of cyclic AMP in the small group of slow muscle fibres which act as the pacemaker for this rhythm.  相似文献   

2.
Summary A concentration-dependent localization of octopamine-sensitive adenylate cyclase activity has been demonstrated in skeletal muscle of the locust, Schistocerca gregaria, using an histochemical technique. In the intermediate speed contracting muscle fibres from the fan region of the extensor-tibiae muscle of the locust hindleg, low concentrations of dl-octopamine (10–8 M) induce reaction product preferentially in the sarcoplasmic reticular component of the dyads. At slightly higher concentrations (10–7 and 10–6 M) lower amounts of diffuse reaction product are also found in the non-dyad sarcoplasmic reticulum and at the sarcolemmal membrane, with occassional amounts of a less diffuse, punctate product in the transverse tubule (T-tubule) component of the dyads. At higher concentrations (10–5 and 10–3 M) the predominant product is the dense, plaque-like accumulations of reaction product in the T-tubule component of the dyads. The results are discussed in terms of the likely physiological significance of the accumulation of reaction product in these different locations.  相似文献   

3.
A concentration-dependent localization of octopamine-sensitive adenylate cyclase activity has been demonstrated in skeletal muscle of the locust, Schistocerca gregaria, using an histochemical technique. In the intermediate speed contracting muscle fibres from the fan region of the extensor-tibiae muscle of the locust hindleg, low concentrations of DL-octopamine (10(-8) M) induce reaction product preferentially in the sarcoplasmic reticular component of the dyads. At slightly higher concentrations (10(-7) and 10(-6) M) lower amounts of diffuse reaction product are also found in the non-dyad sarcoplasmic reticulum and at the sarcolemmal membrane, with occasional amounts of a less diffuse, punctuate product in the transverse tubule (T-tubule) component of the dyads. At higher concentrations (10(-5) and 10(-3) M) the predominant product is the dense, plaque-like accumulations of reaction product in the T-tubule component of the dyads. The results are discussed in terms of the likely physiological significance of the accumulation of reaction product in these different locations.  相似文献   

4.
The localization of adenylate cyclase activity in the fungiform,foliate and circumvallate papillae of rats, rabbits, cats anddogs was determined histochemically using an incubation mediumwith a high pH. Light-microscopic study showed that adenylatecyclase activity is localized not only at the apex of tastebuds but also in other tissues, such as the von Ebner's glandsand the blood vessels or capillaries. The adenylate cyclaseactivity at the apex of taste buds was detectable in all thetaste papillae of rats, rabbits, cats and dogs except for thefungiform papillae of rabbits, though the amount of reactionproduct varied in different papillae. Electron-microscopic studyshowed that the number and density, as well as the size, ofsmall round-shaped electron-dense granules caused by the precipitationof lead with imidodiphosphate at the apex of taste buds arelow in the circumvallate papillae of cats compared with thosein the foliate papillae of rabbits. This may explain the resultthat the amount of reaction product varied in different papillae.  相似文献   

5.
6.
7.
We have investigated the effect of the b isoform of S-100 proteins on adenylate cyclase activity of rat skeletal muscle. S-100b inhibits the adenylate cyclase activity in the presence of Mg2+ (5.0–50 mM), while it activates the same enzyme in the presence of Ca2+ (0.1–1.0 mM) dose-dependently in both cases. S-100b counteracts the stimulatory effect of NaF on adenylate cyclase in the presence of Mg2+ and the inhibitory effect of RMI 12330 A in the presence of Ca2+.  相似文献   

8.
Distal nephron epithelia of defined anatomical origin were microdissected from rabbit kidneys and individually explanted into an in vitro culture system. The 7 day monolayers grown from four different nephron epithelia were studied for the presence and amount of adenylate cyclase reaction product. In each case basal adenylate cyclase was compared with the enzyme reaction product after stimulation by arginine vasopressin, calcitonin, parathyroid hormone (PTH) and isoproterenol. In cortical collecting tubule cultures, the reaction was stimulated by vasopressin greater than isoproterenol greater than calcitonin. PTH had no effect. In cortical thick ascending loop of Henle cells, the stimulation was by calcitonin greater than vasopressin = PTH. Isoproterenol had no effect. In medullary ascending loop epithelia, stimulation was by vasopressin = calcitonin. Neither isoproterenol nor PTH had an effect. These observations indicate that adenylate cyclase is histochemically demonstrable in cultivated cells from rabbit distal nephron segments and that the enzyme activation by hormones is differential according to the epithelium of origin.  相似文献   

9.
Using lead citrate as a capture reagent and adenylate-(beta, gamma-methylene) diphosphate (AMP-PCP) as a substrate, we localized adenylate cyclase activity on the non-ruffled border plasma membrane of approximately half of the osteoclasts on trabecular bone surfaces in the tibial metaphyses of chickens fed a low (0.3%)-calcium diet. The enzyme was not detectable in osteoclasts when chickens were fed a normal calcium diet. Activity was observed on the entire plasma membrane of detached osteoclasts that were situated between osteoblasts on the bone surface and blood vessels in the marrow cavity. Detection of activity on detached osteoclasts required the presence of an activator, implying lower levels in these cells than in those with ruffled borders. Staining was greater on the lateral sides of osteoblasts and osteoclasts when they were in contact with each other. Reaction specificity was indicated by the demonstration of stimulation by forskolin, guanylate-(beta, gamma-methylene) diphosphate (GMP-PCP), dimethylsulfoxide, and NaF, inhibition by alloxan and 2',5'-dideoxyadenosine, and absence of activity when sections were incubated in substrate-free medium or when GMP-PCP replaced AMP-PCP as a substrate. The finding of adenylate cyclase in osteoclast plasma membrane provides structural evidence that the adenylate cyclase-cyclic AMP system has a role in regulation of osteoclast cell function. The low-calcium diet appears to have resulted in increased amounts of adenylate cyclase in osteoclasts.  相似文献   

10.
Activation of adenylate cyclase by guanine nucleotide and catecholamines was examined in plasma membranes prepared from rabbit skeletal muscle. The GTP analog, 5′-guanylyl imidodiphosphate caused a time and temperature-dependent activation of the enzyme which was persistent, the Ka was 0.05 μM. 5′-Guanylyl imidodiphosphate binding to the membranes was time and temperature dependent, KD 0.07 μM. Beta adrenergic amines accelerated the rate of 5′-guanylyl imidodiphosphate activation of the enzyme with an order of potency isoproterenol ≈ soterenol ≈ salbutamol > epinephrine ? norepinephrine. Catecholamine activation was antagonized by propranolol and the β2 antagonist butoxamine; the β1 antagonist practolol was inactive. [3H]Dihydroalprenolol bound to the membranes and binding was antagonized by β adrenergic agonists with an order of potency similar to the activation of adenylate cyclase and was antagonized by butoxamine but not by practolol. The data are consistent with the idea that adenylate cyclase in skeletal muscle plasma membranes is coupled to adrenergic receptors of the β2 type.  相似文献   

11.
Summary Distal nephron epithelia of defined anatomical origin were microdissected from rabbit kidneys and individually explanted into an in vitro culture system. The 7 day monolayers grown from four different nephron epithelia were studied for the presence and amount of adenylate cyclase reaction product. In each case basal adenylate cyclase was compared with the enzyme reaction product after stimulation by arginine vasopressin, calcitonin, parathyroid hormone (PTH) and isoproterenol. In cortical collecting tubule cultures, the reaction was stimulated by vasopressin >isoproterenol>calcitonin. PTH had no effect. In cortical thick ascending loop of Henle cells, the stimulation was by calcitonin>vasopressin=PTH. Isoproterenol had no effect. In medullary ascending loop epithelia, stimulation was by vasopressin=calcitonin. Neither isoproterenol nor PTH had an effect.These observations indicate that adenylate cyclase is histochemically demonstrable in cultivated cells from rabbit distal nephron segments and that the enzyme activation by hormones is differential according to the epithelium of origin.  相似文献   

12.
Summary Ultrastructural localization of adenylate cyclase (AC) activity was investigated in suspensions of unfixed isolated rat thymocytes using a medium containing 0.6 mM 5-adenylylimidodiphosphate (AMP-PNP) as a substrate, 10 mM MgSO4 as an activator, 5 mM theophylline as an inhibitor of 3,5-AMP-phosphodiesterase and 2 mM lead nitrate as a capturing agent. AC activity was demonstrated in plasma membrane, perinuclear space, endoplasmic reticulum, Golgi complex, centriole microtubules and mitochondria. AC was activated with 10–4 M adrenalin in the presence of 5-guanylylimido-diphosphate (GMP-PNP) as well as with 10–2 M NaF. In the cells incubated in a medium devoid of theophylline and containing 5-AMP instead of AMP-PNP, 5-nucleotidase activity was observed in the same cell structures as AC activity. Hydrolysis of 5-AMP in the nucleus was much stronger than that of AMP-PNP. 10 mM NaF markedly inhibited hydrolysis of 5-AMP in all cell structures. No staining was observed with 2 mM -glycerophosphate as a substrate. Incubation of unfixed thymocytes in media containing AMP-PNP, 5-AMP or p-nitrophenyl phosphate, but not -glycerophosphate, induced both in the nucleus and in the cytoplasm in some cells an appearance of a transitory reticular formation consisting of about 30 nm thick strands which could penetrate the nuclear envelope and plasma membrane and form connections with adjacent cells. The transitory reticular formation seems to belong to the cytoskeleton and to be involved in cell aggregation.  相似文献   

13.
Experiments were carried out to clarify the sites of action of beta-adrenergic agonists in skeletal muscle microsomes. Microsomes were fractionated into longitudinal reticulum, terminal cisternae, and isolated transverse tubules. Transverse tubules were selectively labeled and tracked with [3H]ouabain. beta-adrenergic receptor was identified by [3H]dihydroalprenolol binding. Assays of beta-adrenergic receptor, adenylate cyclase, and protein kinase-stimulated phosphorylation showed: 1) beta-adrenergic receptor was detected in transverse tubules with a receptor density of 0.61 pmol/mg of protein. No significant binding was detected in longitudinal reticulum or in terminal cisternae. 2) Isoproterenol-stimulated adenylate cyclase was present in microsomes but was similarly confined to the transverse tubular fraction. The activity of F- stimulated cyclase in transverse tubules was 2.3 nmol/mg of protein/min. 3) No phosphorylation of microsomes by cyclic AMP and protein kinase could be detected. We conclude that the action of epinephrine on skeletal muscle is mediated through receptors and adenylate cyclase in the external membrane.  相似文献   

14.
Activation of adenylate cyclase by guanine nucleotide and catecholamines was examined in plasma membranes prepared from rabbit skeletal muscle. The GTP analog, 5'-guanylyl imidodiphosphate caused a time and temperature-dependent activation of the enzyme which was persistent, the Ka was 0.05 microM. 5'-Guanylyl imidodiphosphate binding to the membranes was time and temperature dependent, KD 0.07 microM. Beta adrenergic amines accelerated the rate of 5'-guanylyl imidodiphosphate activation of the enzyme with an order of potency isoproterenol approximately soterenol approximately salbutamol greater than epinephrine greater than norephrine. Catecholamine activation was antagonized by propranolol and the beta2 antagonist butoxamine; the beta1 antagonist practolol was inactive. [3H]Dihydroalprenolol bound to the membranes and binding was antagonized by beta adrenergic agonists with an order of potency similar to the activation of adenylate cyclase and was antagonized by butoxamine but not by practolol. The data are consistent with the idea that adenylate cyclase in skeletal muscle plasma membranes is coupled to adrenergic receptors of the beta2 type.  相似文献   

15.
Summary Adenylate cyclase activity was demonstrated in the cilia, dendritic knob and axon of rat olfactory cells by using a strontium-based cytochemical method. The activity in the cilia and the dendritic knob was enhanced by non-hydrolyzable GTP (guanosine triphosphate) analogues and forskolin, and inhibited by Ca2+, all in agreement with biochemical reports of the odorant-sensitive adenylate cyclase. The results support the hypothesis of cyclic AMP working as a second messenger in olfactory transduction and imply that the transduction sites exist not only in the olfactory cilia but also in the dendritic knob. Enzymatic activity was also observed in the olfactory dendritic shaft by treating the tissue with 0.0002% Triton X-100, although the properties and role of the enzyme in this region are uncertain. The detergent inhibited the enzymatic activity in the cilia and the dendritic knob.  相似文献   

16.
1. At the embryonic stages the adenylate cyclase of chick skeletal muscle possesses high catalytic activity, which is about 10 times higher than its mature level. 2. The reactivity of adenylate cyclase system to catecholamines appears in embryogenesis by the end of the second week, whereas the dose dependence only appears in the third week. 3. The stimulatory effect of catecholamines on adenylate cyclase in chick skeletal muscle is mediated through the beta-adrenoreceptor. 4. The suggestion is made that the limiting factor in the development of adrenoreactivity of membrane adenylate cyclase system is the number of receptors.  相似文献   

17.
Summary The cytochemical localization of adenylate cyclase was studied in relation to the secretory function of the anterior pituitary glands of male rats. The reaction product of adenylate cyclase was localized on the outside of plasma membranes, but was not detected intracellularly. High activity of adenylate cyclase was detected on somatotrophs and microvilli of follicular cells, whereas no activity was found on thyrotrophs or corticotrophs. Although most of the gonadotrophs showed little or no adenylate-cyclase activity, some was detected in a small number of gonadotrophs in the central portion of the gland. In somatotrophs, activity was not detected on the plasma membranes facing perivascular spaces where exocytotic extrusion of secretory granules was frequently observed, although the remaining areas of plasma membranes of the same somatotrophs were associated with high levels of adenylate-cyclase activity. These findings indicate that the association of a high level of adenylate-cyclase activity is not directly related to the ability of the plasma membranes to fuse with secretory granule membranes.  相似文献   

18.
In almost all cell types, adenylate cyclase is located in the plasma membrane. In lymphocytes, however, this enzyme has been claimed to be largely present in intracellular compartments. In this study, the distribution of adenylate cyclase activity in subcellular fractions of calf thymocytes was reinvestigated by a balance sheet approach. When subcellular fractionation was performed in the absence of ATP and dithiothreitol, less than a half of the homogenate basal activity could be recovered in the fractions, and this amount was distributed almost equally in three main compartments: the plasma membrane fraction, the microsomal and mitochondrial fractions and the nuclear fraction. However, if enzyme activity in the above fractions was measured in the presence of the stimulatory agents NaF, guanylylimidophosphate or guanosine 5'-O-(3-thio)triphosphate, or if the subcellular fractionation was performed in media containing ATP and dithiothreitol, the overall recovered activity greatly increased (up to 90%) and the distribution was shifted in favour of the plasma membrane fraction (up to 65% of the recovered activity). The adenylate cyclase properties were similar in all fractions. The ionophore alamethicin did not alter the subcellular distribution of the enzyme. The localization of adenylate cyclase in thymocytes thus appears to be primarily, if not uniquely, in the plasma membrane, as generally found in other cell types.  相似文献   

19.
20.
Summary The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synapto-somes ofTorpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5′-adenylyl imidodiphosphate as substrate and 5′-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of leed pyrophosphate precipitate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号