首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
CD13 Ag and CD11a, CD11b, CD18 molecule expression on peripheral blood mononuclear cells (PBMC) were studied as these cells' adherent or transendothelial migration properties in three different multiple sclerosis (MS) patients groups (total 38): with clinically active MS (acute exacerbation of MS and primary chronic progressive MS (CP-MS)) and with MS remission. The control group consisted of patients, suffering from other non-inflammatory neurological diseases (OND). The results of our study suggest that CD11a/CD18 molecules expression on PB lymphocytes, although higher on these cells' surface in the course of MS as compared to OND, does not differentiate clinical forms of MS. CD11a molecule expression on monocytes did not differ significantly in all tested MS patient groups in comparison to OND. Although the expression of CD11b/CD18 molecules on monocytes' surface shows their activation in the course of MS, it does not differentiate them either. However, CD13 Ag of APN expression on PBMC surface may be an immunological marker of MS clinical form. CD13 Ag expression may also be a sensitive marker of these cells' transendothelial migration properties.  相似文献   

2.
Abstract In this study direct immunofluorescence and flow cytometry with calibration using quantitative bead standards were used to enumerate the cell surface receptors CD11a/CD18, CD11b/CD18 and L-selectin. Holding blood at room temperature and fixation of samples prior to staining induced changes in expression, while immediate staining of polymorphonuclear granulocytes (PMN) in whole blood followed by fixation produced accurate values. The ranges of PMN adhesion molecule expression in 10 normal individuals were CD11a/CD18: 14794–28725, CD11b/CD18: 5300–11939 and L-selectin: 35662–61654 receptors per cell. Differences within individuals over 4 h were also observed. Adhesion molecule expression is used as an index of the adhesive function and state of activation of the cell. The data presented here shows that there is inherent variability in the expression of the PMN adhesion molecules between and within individuals, thus direct comparisons of PMN adhesion molecule expression between patients and “normals” must be interpreted with caution.  相似文献   

3.
CD11b/CD18 is a heterodimeric leukocyte surface receptor which functions in both C3bi-ligand binding and homotypic and heterotypic cell adherence. We have examined the effect of several anti-CD11b/18 mAb on phagocytosis of IgG (EIgG) or complement (EC4b) opsonized erythrocytes by polymorphonuclear leukocytes (PMN) and monocytes. F(ab')2 of two mAb (IB4, an anti-beta-chain mAb and Mo-1 an anti-alpha-chain mAb), inhibited both phagocytosis of EIgG and phorbol ester-stimulated phagocytosis of EC4b by PMN and monocytes. These F(ab')2 inhibited the binding of EIgG to monocytes, but they had no effect on binding of EIgG to PMN, or EC4b to either phagocyte. In addition, IB4 inhibited phorbol-ester stimulated phagocytosis of sheep E opsonized with C component 3bi (EC3bi) without inhibiting rosetting of these same targets. These data separate the anti-phagocytic effect of these mAb from effects on phagocyte-target adherence. When PMN were adherent to an anti-CD11b/CD18 F(ab')2-coated surface, EC3bi binding was abolished, but phagocytosis of EIgG or EC4b was unaffected. Subsequent addition of fluid- phase IB4 or Mo-1 F(ab')2 inhibited phagocytosis of EIgG or EC4b by the adherent cells. This suggested that the CD11b/CD18 involved in C3bi rosetting were mobile in the membrane, whereas those involved in phagocytosis of EIgG or EC4b were not. Cytochalasin treatment of PMN during adherence to F(ab')2-coated plates decreased both apical expression of CD11b/18 and subsequent ingestion of EIgG by 70%, suggesting that microfilaments are important in maintaining immobile CD11b/18 on the apical PMN surface. We conclude that there are functionally distinct populations of CD11b/CD18 on monocytes and PMN: one involved in C3bi rosetting and another involved in the process of phagocytosis mediated via several different receptors. CD11b/18 is not required for optimal target binding in all cases, but is always required for ingestion. As with several other integrins, the CD11b/18 molecules involved in phagocytosis have a functional association with the cell cytoskeleton.  相似文献   

4.
The aim of this prospective study was to define the flow cytometric characteristics of simultaneously investigated bone marrow and peripheral blood plasma cells antigens expression in 36 plasma cell leukemia (PCL) patients. The immunophenotypic profile of plasma cells was determined with a panel of monoclonal antibodies. The antigen expression intensity was calculated as relative fluorescence intensity (RFI). Bone marrow plasma cells showed expression of particular antigens in the following proportion of cases: CD49d 100%, CD29 94%, CD54 93%, CD44 83%, CD56 60%, CD18 26%, CD11b 29%, CD11a 19%, CD117 27%, CD71 30%, CD126 100% and CD19 0%, while the expression of those antigens on peripheral blood plasma cells was present in the following percentage of patients: CD49d 100%, CD29 96%, CD54 93%, CD44 95%, CD56 56%, CD18 50%, CD11b 53%, CD11a 29%, CD117 26%, CD71 28%, CD126 100% and CD19 0%. The expression of CD54 was significantly higher than that of adhesion molecules belonging to the integrin b2 family: CD11a, CD18 and CD11b, on both bone marrow and peripheral blood cells (p < 0.01). Expression of CD18, CD11a and CD11b was differential between two cell compartments: lower on bone marrow and higher on peripheral blood cells. We found that plasma cells in the bone marrow of patients with plasma cell leukaemia showed significantly greater granularity and size than those in the peripheral blood (p = 0.0001 and p = 0.04, respectively). However, no differences in cell size or granularity were revealed between bone marrow plasma cells from patients with PCL and multiple myeloma. In conclusion, impaired expression of adhesion molecules such as CD11a/CD18 (LFA-1) or CD56 may explain hematogenic dissemination characterizing PCL. The following pattern of adhesion molecule expression according to the proportion of plasma cells expressing a given antigen in peripheral blood and bone marrow and arranged in diminishing order may be established: CD49d > CD44 > CD54 > CD29 > CD56 > CD18 > CD11b > CD11a. Immuno-phenotyping of plasma cells in PCL, as in multiple myeloma, might be useful in detecting minimal residual disease in cases with aberrant antigen expression and for selecting therapeutic agents towards specific membrane targets.  相似文献   

5.
Several structural homologues of the chemotactic peptide neutrophil-activating peptide 1/IL-8 (NAP-1/IL-8) were tested for their ability to influence the expression and function of adhesion-promoting receptors on human polymorphonuclear leukocytes (PMN). NAP-2, melanoma growth stimulatory activity, and two forms of NAP-1/IL-8 (ser-NAP-1/IL-8 and ala-NAP-1/IL-8, consisting of 72 and 77 amino acids, respectively), each caused an increase in the expression of CD11b/CD18 (CR3) and CR1, which was accompanied by a decrease in the expression of leukocyte adhesion molecule-1 (LAM-1, LECAM-1). The binding activity of CD11b/CD18 was also enhanced 3- to 10-fold by these peptides, but enhanced function was transient: binding of erythrocytes coated with C3bi reached a maximum by 30 min and declined thereafter. Ser-NAP-1/IL-8, ala-NAP-1/IL-8, NAP-2, and melanoma growth stimulatory activity also caused a two- to threefold enhancement of the phagocytosis of IgG-coated erythrocytes (EIgG) by PMN without causing a large increase in the expression of Fc gamma receptors. Enhanced phagocytosis of EIgG appeared to be mediated through CD11b/CD18, because F(ab')2 fragments of an antibody directed against CD18 inhibited NAP-1/IL-8-stimulated ingestion of EIgG. The four active peptides caused a rapid, transient increase in the amount of F-actin within PMN, indicating that they are capable of influencing the structure of the microfilamentous cytoskeleton, which participates in phagocytosis. Two other NAP-1/IL-8-related peptides, platelet factor 4 and connective tissue-activating peptide III, were without effect on expression of CD11b/CD18, CR1, and LAM-1, binding activity of CD11b/CD18, or Fc-mediated phagocytosis, and increased actin polymerization only slightly. Our observations indicate that several members of the NAP-1/IL-8 family of peptides were capable of promoting integrin-mediated adhesion and Fc-mediated phagocytosis, processes important in the recruitment of PMN to sites of inflammation and antimicrobial responses of PMN.  相似文献   

6.
Gram-negative bacterial septicemia is a common clinical syndrome resulting, in part, from the activation of phagocytic leukocytes by LPS. By using flow cytometry, we have characterized LPS-induced expression of the beta 2 integrin CD11b/CD18. After exposure to Salmonella minnesota R595 LPS, expression of neutrophil CD11b/CD18 is rapidly upregulated, beginning within 5 min and achieving a peak fluorescence (typically two- to threefold over base line) by 30 min. The increase in CD11b/CD18 expression was similar in kinetics and magnitude to that produced by FMLP, PMA, and human rTNF-alpha. Concentrations of LPS necessary to stimulate a response were as low as 1 ng/ml of R595 LPS; a maximal response was observed between 30 and 100 ng/ml. The upregulation of CD11b/CD18 due to LPS was not interrupted by protein synthesis inhibitors. A group of glucosamine disaccharide lipid A-like molecules: Rhodobacter sphaeroides lipid A, lipid IVA, KDO2IVA, and deacylated LPS were able to block the stimulatory effect of LPS. This inhibition was specific for the actions of LPS as stimulation of polymorphonuclear leukocytes (PMN) by FMLP, human rTNF alpha, PMA, and rewarming were not altered by the disaccharide inhibitors. PMN which were exposed to the specific disaccharide LPS antagonists and then washed, were refractory to stimulation by LPS. The monosaccharide lipid A precursor lipid X also blocked stimulation of neutrophils by LPS, although with a 100-fold reduction in potency. Unlike the disaccharide inhibitors, PMN exposed to lipid X were still responsive to LPS stimulation after washing. The PMN response to LPS was less sensitive in the absence of serum, although upregulation of CD11b/CD18 could still be seen using higher concentrations of LPS. Monoclonal antibody directed against CD14 (clone 3C10), also specifically inhibited LPS induced PMN CD11b/CD18 expression both in the presence and absence of serum. These findings support the hypothesis that LPS stimulates neutrophils by interacting with specific cellular receptors.  相似文献   

7.
Our objective was to study the influence of HIV infection of polymorphonuclear leukocytes (PMN) on transepithelial migration. To date, reports of functional PMN chemotaxis in AIDS are contradictory. This is the first attempt to assess this function via an in vitro model allowing transmigration of neutrophils through an intestinal epithelial barrier. PMN were isolated from 45 HIV-infected patients and 45 healthy volunteers. PMN transmigration across T84 epithelial cells was initiated by applying either various concentrations of formyl-met-leu-phe peptide (f-MLP) or interleukin-8 and assayed by quantification of myeloperoxidase activity. CD11b, CD18, and CD47 expression on PMN was compared before and after transepithelial migration by flow cytometry analysis. CD11b expression was studied by electron microscopy. Apoptosis of transmigrated HIV PMN and control PMN was investigated by morphology and DNA fragmentation characterization. Compared to control PMN, HIV PMN exhibited a decrease in transepithelial migration that directly correlated with CD4+ counts. Basal and transepithelial migration-mediated expression of CD11b, CD18, and CD47 were unmodified in HIV PMN compared to control PMN. Electron microscopy labeling confirmed no difference in CD11b expression on HIV and control PMN. The index of apoptosis in transmigrated HIV PMN and control PMN was identical. These data provide evidence of a defect in the f-MLP-induced chemotaxis of PMN from HIV-infected patients across an intestinal epithelial barrier. This defective migration is not due to a quantitative modification of CD11b, CD18 and CD47 on HIV PMN suggesting a more subtle alteration. The impairment in the transmigration function may contribute in vivo to an increased susceptibility to intestinal bacterial infection in HIV-infected patients.  相似文献   

8.
The pathologic role of autoantibodies in autoimmune disease is widely accepted. Recently, we reported that anti-myelin basic protein (MBP) serum Abs from multiple sclerosis (MS) patients exhibit proteolytic activity toward the autoantigen. The aim of this study is to determine MBP epitopes specific for the autoantibodies in MS and compare these data with those from other neuronal disorders (OND), leading to the generation of new diagnostic and prognostic criteria. We constructed a MBP-derived recombinant "epitope library" covering the entire molecule. We used ELISA and PAGE/surface-enhanced laser desorption/ionization mass spectroscopy assays to define the epitope binding/cleaving activities of autoantibodies isolated from the sera of 26 MS patients, 22 OND patients, and 11 healthy individuals. The levels of autoantibodies to MBP fragments 48-70 and 85-170 as well as to whole MBP and myelin oligodendrocyte glycoprotein molecules were significantly higher in the sera of MS patients than in those of healthy donors. In contrast, selective reactivity to the two MBP fragments 43-68 and 146-170 distinguished the OND and MS patients. Patients with MS (77% of progressive and 85% of relapsing-remitting) but only 9% of patients with OND and no healthy donors were positive for catalysis, showing pronounced epitope specificity to the encephalitogenic MBP peptide 81-103. This peptide retained its substrate properties when flanked with two fluorescent proteins, providing a novel fluorescent resonance energy transfer approach for MS studies. Thus, anti-MBP autoantibody-mediated, epitope-specific binding and cleavage may be regarded as a specific characteristic of MS compared with OND and healthy donors and may serve as an additional biomarker of disease progression.  相似文献   

9.
Leukocyte adhesion deficiency (LAD) is a hereditary disease characterized by defective expression of leukocyte adhesion glycoproteins; lymphocyte function-associated Ag-1 (CD11a/CD18), CR3 (CD11b/CD18) and p150,95 (CD11c/CD18). Granulocytes, monocytes, and lymphocytes of patients with LAD show profoundly defective in vivo and in vitro adherence-dependent immune functions. We investigated the expression of FcR for IgG on polymorphonuclear cells (PMN) and monocytes from patients with LAD, and their luminol- and lucigenin-enhanced chemiluminescence production in response to SRBC sensitized with murine (m) IgG2a and IgG2b. Unstimulated patient PMN showed an enhanced chemiluminescence in response to mIgG2a-SRBC and an increased phagocytosis of mIgG2a-SRBC. The up-regulated functions were inhibited by monomeric human IgG in a dose-dependent manner, which was attributed to an increase in expression of FcRI on patient PMN, as shown by flow cytometry using monoclonal antibody, 32.2, specific for human FcRI. In contrast, neither the expression of FcR on the monocytes of LAD patients nor their FcR-mediated functions were different from those of controls.  相似文献   

10.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

11.
The adhesion of polymorphonuclear leukocytes (PMNs) to vascular endothelial cells (EC) is an early and fundamental event in acute inflammation. This process requires the regulated expression of molecules on both the EC and PMN. EC stimulated with histamine or thrombin coexpress two proadhesive molecules within minutes: granule membrane protein 140 (GMP-140), a member of the selectin family, and platelet-activating factor (PAF), a biologically active phospholipid. Coexpression of GMP-140 and PAF is required for maximal PMN adhesion and the two molecules act in a cooperative fashion. The component of adhesion mediated by EC-associated PAF requires activation of CD11/CD18 integrins on the PMN and binding of these heterodimers to counterreceptors on the EC. GMP-140 also binds to a receptor on the PMN; however, it tethers the PMN to the EC without requiring activation of CD11/CD18 integrins. This component of the adhesive interaction is blocked by antibodies to GMP-140 or by GMP-140 in the fluid phase. Experiments with purified GMP-140 indicate that binding to its receptor on the PMN does not directly induce PMN adhesiveness but that it potentiates the CD11/CD18-dependent adhesive response to PAF by a mechanism that involves events distal to the PAF receptor. Tethering of the PMN to the EC by GMP-140 may also be required for efficient interaction of PAF with its receptor on the PMN. These observations define a complex cell recognition system in which tethering of PMNs by a selectin, GMP-140, facilitates juxtacrine activation of the leukocytes by a signaling molecule, PAF. The latter event recruits the third component of the adhesive interaction, the CD11/CD18 integrins.  相似文献   

12.
Neutrophil (PMN) transepithelial migration is dependent on the leukocyte beta(2) integrin CD11b/CD18, yet the identity of epithelial counterreceptors remain elusive. Recently, a JAM protein family member termed JAM-C was implicated in leukocyte adhesive interactions; however, its expression in epithelia and role in PMN-epithelial interactions are unknown. Here, we demonstrate that JAM-C is abundantly expressed basolaterally in intestinal epithelia and localizes to desmosomes but not tight junctions. Desmosomal localization of JAM-C was further confirmed by experiments aimed at selective disruption of tight junctions and desmosomes. In assays of PMN transepithelial migration, both JAM-C mAbs and JAM-C/Fc chimeras significantly inhibited the rate of PMN transmigration. Additional experiments revealed specific binding of JAM-C to CD11b/CD18 and provided evidence of other epithelial ligands for CD11b/CD18. These findings represent the first demonstration of direct adhesive interactions between PMN and epithelial intercellular junctions (desmosomes) that regulate PMN transepithelial migration and also suggest that JAM-C may play a role in desmosomal structure/function.  相似文献   

13.
CD11b/CD18-mediated adhesive interactions play a key role in regulating polymorphonuclear leukocytes (PMN)) migration across intestinal epithelium. However, the identity of epithelial ligands for migrating PMN remains obscure. In this study we investigated the role of carbohydrates in mediating adhesive interactions between T84 intestinal epithelial cells and CD11b/CD18 purified from PMN. Fucoidin, heparin/heparin sulfate, N-acetyl-D-glucosamine, mannose-6-phosphate, and laminarin were found to inhibit adhesion of T84 cells to CD11b/CD18. The most potent inhibitory effects were observed with fucoidin (50% inhibition at 1-5 x 10(-8) M). Binding assays demonstrated that fucoidin directly bound to CD11b/CD18 in a divalent cation- and sulfation-dependent fashion that was blocked by anti-CD11b mAbs. Experiments employing CD11b/CD18 as a probe to blot T84 cell fucosylated proteins purified via fucose-specific lectin column revealed several candidate CD11b/CD18 binding proteins with molecular masses of 95, 50, 30, 25, and 20 kDa. Fucosidase treatment of T84 cells resulted in significantly reduced cell adhesion to CD11b/CD18, while no inhibition was observed after neuraminidase treatment. Finally, significant inhibition of T84 cell adhesion to CD11b/CD18 was observed after blocking cell proteoglycan synthesis with p-nitrophenyl-beta-D-xylopyranoside. These findings implicate epithelial cell surface proteoglycans decorated with sulfated fucose moieties as ligands for CD11b/CD18 during PMN migration across mucosal surfaces.  相似文献   

14.
Multiple sclerosis (MS) is an autoimmune disease, showing a great degree of variance in temporal disease activity. We have recently demonstrated that peripheral blood NK cells biased for secreting IL-5 (NK2 bias) are associated with the remission state of MS. In this study, we report that MS patients in remission differentially express CD11c on NK cell surface (operationally defined as CD11chigh or CD11clow). When we compared CD11chigh or CD11clow patients, the expression of IL-5 and GATA-3 in NK cells supposed to endow a disease-protective NK2 phenotype was observed in CD11clow but not in CD11chigh patients. In contrast, the CD11chigh group showed a higher expression of HLA-DR on NK cells. In vitro studies demonstrated that NK cell stimulatory cytokines such as IL-15 would up-regulate CD11c expression on NK cells. Given previous evidence showing an association between an increased level of proinflammatory cytokines and temporal disease activity in MS, we postulate that inflammatory signals may play a role in inducing the CD11chigh NK cell phenotype. Follow-up of a new cohort of patients showed that 6 of 10 CD11chigh MS patients developed a clinical relapse within 120 days after evaluation, whereas only 2 of 13 CD11clow developed exacerbated disease (p = 0.003). As such, a higher expression of CD11c on NK cells may reflect the temporal activity of MS as well as a loss of regulatory NK2 phenotype, which may allow us to use it as a potential biomarker to monitor the immunological status of MS patients.  相似文献   

15.
Leukocyte β2-integrin CD11b/CD18 mediates the firm adhesion and subsequent transepithelial migration of polymorphonuclear leukocytes, but the identity of its counter-receptor(s) on epithelia remains elusive. Here we identified a monoclonal antibody, clone C3H7, which strongly bound to the basolateral membranes of epithelial cells and inhibited both the adhesion of epithelial cells to immobilized CD11b/CD8 and the transepithelial migration of PMNs in a physiologically relevant basolateral-to-apical direction. C3H7 antigen expression in epithelial monolayers was significantly increased by treatment with proinflammatory cytokine interferon-γ or a combination of interferon-γ and tumor necrosis factor-α. Up-regulation of C3H7 antigen was also observed in the epithelium of inflamed human colon tissues. Microsequencing and Western blotting of the purified antigen showed it to be CD44 variant 3 (CD44v3), a ∼160-kDa membrane glycoprotein. Further studies demonstrated that this epithelial CD44v3 specifically binds to CD11b/CD18 through its heparan sulfate moieties. In summary, our study demonstrates for the first time that the heparan sulfate proteoglycan form of epithelial CD44v3 plays a critical role in facilitating PMN recruitment during inflammatory episodes via directly binding to CD11b/CD18.A major component of many inflammatory diseases is the migration of large numbers of neutrophils (polymorphonuclear leukocytes, PMNs)2 across the epithelium and their accumulation within a lumen. Examples include inflammatory bowel disease (IBD), cholangitis, cholecystitis, bronchial pneumonia, bronchitis, pyelonephritis, and cystitis. Under these pathophysiological conditions, epithelial injury and disease symptoms parallel PMN infiltration of the mucosa (1, 2). The current paradigm for migration of PMN across epithelial monolayers envisions a process consisting of sequential molecularly defined events such as CD11b/CD18-mediated firm adhesion of PMN with epithelia (3) followed by CD47-SIRPα interactions at the post-adhesion stage (4). However, although PMN transepithelial migration (TEM) has been widely demonstrated to be CD11b/CD18-dependent, the epithelial counter-receptor(s) for CD11b/CD18 in mediating PMN-epithelia adhesion has not been identified.Function mapping studies using domain-specific antibodies have demonstrated that the inserted domain (I-domain), a stretch of 200 amino acids of the CD11b subunit, is a major binding domain for CD11b/CD18 ligands (5). The I-domain of CD11b is promiscuous in ligand binding and has many known receptors including ICAM-1 (6, 7), fibrinogen (8), collagen (9), Cyr61 (CCN1), and connective tissue growth factor (CCN2) (10), heparin/heparan sulfate (11, 12), elastase (13), iC3b (14), and platelet glycoprotein Ibα (15). However, none of these ligands appear to mediate the firm adhesion of PMNs to the basolateral surfaces of epithelial monolayers at early stages of transmigration. Thus far, no epithelial basolaterally expressed CD11b/CD18 counter-receptor has been identified. ICAM-1, the best characterized cellular ligand for CD11b/CD18, cannot be the intestinal epithelial CD11b/CD18 ligand that mediates PMN firm adhesion because: (a) ICAM-1 is normally not expressed on intestinal epithelia except under inflammatory conditions (16) and (b) when ICAM-1 expression is induced it is up-regulated on the apical rather than basolateral surface of intestine epithelia. In an effort to understand the mechanisms that govern CD11b/CD18-mediated PMN TEM, previous studies by us and others have found that epithelial surface-sulfated proteoglycans (17) and junction adhesion molecule C (JAM-C) play a significant role in regulating PMN transmigration via interaction with leukocyte CD11b/CD18 (18, 19). However, compared with functional inhibitory anti-CD11b antibodies that completely block PMN TEM, soluble carbohydrates or antibodies against JAM-C create only partial inhibition. These results clearly suggest the existence of unknown epithelial adhesion molecule(s) that bind to leukocyte CD11b/CD18 and regulate PMN TEM. Heparin and heparan sulfate have also been shown to block the adhesion and PMN TEM via binding to CD11b/CD18 (11, 12); thus it is reasonable to suggest that a basolateral membrane glycoprotein decorated with heparan sulfate moieties may serve as a counter-receptor for CD11b/CD18. However, the nature of this epithelial heparan sulfate proteoglycan has not been identified.Here we sought to identify novel epithelial adhesive ligand(s) important in PMN transmigration, in particular, a ligand that can bind to CD11b/CD18 on migrating PMNs and mediate the firm adhesion of PMNs to the epithelial basolateral surfaces. To do this, we screened a panel of monoclonal antibodies generated against epithelial plasma membranes. This screening identified one mAb, termed C3H7, that recognized a basolateral membrane protein and inhibited PMN TEM in a physiologically relevant basolateral-to-apical direction. Further study of these results identified the C3H7 antigen as a v3-type human epithelial CD44 variant, a ∼160-kDa glycoprotein that is decorated with heparan sulfate moieties. Subsequent studies revealed that the C3H7 antigen appears to function as a cellular ligand for CD11b/CD18 in regulating the firm adhesion of PMNs to the epithelium during their transmigration process.  相似文献   

16.

Background

High content immune profiling in peripheral blood may reflect immune aberrations associated with inflammation in multiple sclerosis (MS) and other autoimmune diseases affecting the central nervous system.

Methods and Findings

Peripheral blood mononuclear cells from 46 patients with multiple sclerosis (MS), 9 patients diagnosed with relapsing remitting MS (RRMS), 13 with secondary progressive multiple sclerosis (SPMS), 9 with other neurological diseases (OND) and well as 15 healthy donors (HD) were analyzed by 12 color flow cytometry (TCRαβ, TCRγδ, CD4, CD8α, CD8β, CD45RA, CCR7, CD27, CD28, CD107a, CD127, CD14) in a cross-sectional study to identify variables significantly different between controls (HD) and patients (OND, RRMS, SPMS). We analyzed 187 individual immune cell subsets (percentages) and the density of the IL-7 receptor alpha chain (CD127) on 59 individual immune phenotypes using a monoclonal anti-IL-7R antibody (clone R34.34) coupled to a single APC molecule in combination with an APC-bead array. A non-parametric analysis of variance (Kruskal-Wallis test) was conducted in order to test for differences among the groups in each of the variables. To correct for the multiplicity problem, the FDR correction was applied on the p-values. We identified 19 variables for immune cell subsets (percentages) which allowed to segregate healthy individuals and individuals with CNS disorders. We did not observe differences in the relative percentage of IL-7R-positive immune cells in PBMCs. In contrast, we identified significant differences in IL-7 density, measured on a single cell level, in 2/59 variables: increased numbers of CD127 molecules on TCRαβ+CD4+CD25 (intermed) T-cells and on TCRαβ+CD4+CD25−CD107a+ T-cells (mean: 28376 Il-7R binding sites on cells from HD, 48515 in patients with RRMS, 38195 in patients with SPMS and 33692 IL-7 receptor binding sites on cells from patients with OND).

Conclusion

These data show that immunophenotyping represents a powerful tool to differentiate healthy individuals from individuals suffering from neurological diseases and that the number of IL-7 receptor molecules on differentiated TCRαβ+CD4+CD25−CD107a+ T-cells, but not the percentage of IL-7R-positive cells, segregates healthy individuals from patients with neurological disorders.  相似文献   

17.
We have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1) and the complex of leukocyte surface adhesion molecules designated CD11/CD18 to the adhesion of human polymorphonuclear leukocytes (PMN) to cultured human endothelial cells (HEC), activated by rIL-1 beta for 4 or 24 h. Inhibition of PMN attachment to IL-1-activated HEC was measured in a quantitative in vitro monolayer adhesion assay, after treatment with mAb directed to ELAM-1 (mAb H18/17), and to CD11a (mAb L11), CD11b (mAb 44), CD11c (mAb L29), and CD18 (mAb 10F12), alone or in combination. Pretreatment of activated HEC with mAb H18/7 inhibited PMN adhesion by 47 +/- 8% whereas control mAb had no effect. CD11/CD18-directed mAb significantly blocked PMN adhesion to activated HEC (anti-CD11a, 40 +/- 3%; anti-CD11b, 34 +/- 4%; anti-CD18, 78+/- 6% inhibition). The combination of mAb H18/7 and each of the various anti-CD11/CD18 mAb resulted in greater inhibition of PMN adhesion than any Mab alone. After 24 h of rIL-1 beta treatment, when ELAM-1 was markedly decreased but elevated PMN adhesion was still observed, mAb H18/7 had no effect on PMN adhesion. At this time, CD11/CD18-dependent adhesive mechanisms predominated and a CD11c-dependent mechanism became apparent (anti-CD11a, 67 +/- 4% inhibition; anti-CD11b, 45 +/- 9%; anti-CD11c, 26 +/- 6%; anti-CD18, 97 +/- 1%). In summary, PMN adhesion to IL-1-activated HEC involves both CD11/CD18-dependent mechanisms and an ELAM-1-dependent mechanism, and the relative contribution of these varies at different times of IL-1-induced HEC activation. The additive blocking observed at 4 h with mAb H18/7 in combination with CD11/CD18-directed Mab implies that members of the CD11/CD18 complex do not function as an obligate ligand(s) for ELAM-1.  相似文献   

18.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

19.
20.
rIL-1 beta treatment of cultured human endothelial cells (HEC) promotes polymorphonuclear leukocyte (PMN) adhesion and transmigration. Using in vitro quantitative monolayer adhesion and videomicroscopic transmigration assays, we have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and the leukocyte adhesion complex, CD11/CD18, to these processes. Maximal enhancement of PMN adhesion and transmigration were observed after 4 h of rIL-1 beta treatment, when surface expression of ELAM-1 had peaked and ICAM-1 was modestly increased. Blocking mAb directed to either ELAM-1 or ICAM-1 inhibited greater than 90% of the up-regulated PMN transmigration. Blocking mAb directed to either CD11a/CD18 (LFA-1, a ICAM-1 counter-receptor), CD11b/CD18 (Mo-1), or CD18 (common beta 2-integrin) also blocked greater than 90% of PMN transmigration. At later time points (24 or 48 h), ELAM-1 surface expression was markedly decreased, whereas ICAM-1 expression was increased over the 4-h level; PMN adhesion remained elevated (approximately 50 to 60% of 4 h level), but transmigration returned to levels seen with unactivated HEC. These data indicate that PMN interaction with at least two distinct HEC adhesion molecules is necessary for transendothelial migration and suggests that PMN adhesion and transmigration, although interrelated, are mechanistically distinct processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号