首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we investigated whether the increase of hepatic vitamin E content by intraperitoneal administration, influences chronic liver damage induced by carbon tetrachloride (CCl(4)) in rats. Thirty adult male Wistar rats were divided into three groups. The first group was used as a control and the rats in the second group were administered CCl(4) in olive oil subcutaneously. Rats in the third group were administered intraperitoneally vitamin E (dl-alpha-tocopherol acetate, 100 mg kg(-1)). This administration was performed three times per week for five weeks. Liver samples were used for the determination of vitamin E levels, glutathione peroxidase (GSHPx) activities and histological examination. Serum levels of alanine aminotransferase, lactate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, gamma-glutamyltranspeptidase, total and conjugated bilirubin were significantly (p<0.05, p<0.01, p<0.001) higher in animals treated with CCl(4) than in the controls and had returned to normal values by the administration of vitamin E + CCl(4 ). Liver vitamin E levels were significantly (p<0.05) lower in the CCl(4) group than in the control group. However, the liver vitamin E content was significantly (p<0.01, p<0.001) increased in the vitamin E + CCl(4) injected group. On the other hand, liver GSHPx activity was not statistically different among the groups. On histological examination, vitamin E administered animals showed incomplete, but significant, prevention of liver necrosis and cirrhosis induced by CCl(4 ). these data indicate that intraperitoneally administered vitamin E has protective effects against CCl(4)-induced chronic liver damage and cirrhosis as evidenced by biochemical data and conventional histological examination.  相似文献   

2.
On the basis that ozone (O3) can upregulate cellular antioxidant enzymes, a morphological, biochemical and functional renal study was performed in rats undergoing a prolonged treatment with O3 before renal ischaemia. Rats were divided into four groups: (1) control, a medial abdominal incision was performed to expose the kidneys; (2) ischaemia, in animals undergoing a bilateral renal ischaemia (30 min), with subsequent reperfusion (3 h); (3) O3 + ischaemia, as group 2, but with previous treatment with O3 (0.5 mg/kg per day given in 2.5 ml O2) via rectal administration for 15 treatments; (4) O2 + ischaemia, as group 3, but using oxygen (O2) alone. Biochemical parameters as fructosamine level, phospholipase A, and superoxide dismutases (SOD) activities, as well as renal plasma flow (RPF) and glomerular filtration rate (GFR), were measured by means of plasma clearance of p-amino-hippurate and inulin, respectively. In comparison with groups 1 and 3, the RPF and GFR were significantly decreased in groups 2 and 4. Interestingly, renal homogenates of the latter groups yielded significantly higher values of phospholipase A activity and fructosamine level in comparison with either the control (1) and the O3 (3) treated groups. Moreover renal SOD activity showed a significant increase in group 3 without significant differences among groups 1, 2 and 4. Morphological alterations of the kidney were present in 100%, 88% and 30% of the animals in groups 2, 4 and 3, respectively. It is proposed that the O3 protective effect can be ascribed to the substantial possibility of upregulating the antioxidant defence system capable of counteracting the damaging effect of ischaemia. These findings suggest that, whenever possible, ozone preconditioning may represent a prophylactic approach for minimizing renal damage before transplantation.  相似文献   

3.
Antioxidant and antifibrotic properties of colchicine were investigated in the carbon tetrachloride (CCl(4)) rat model. (1) The protective effect of colchicine pretreatment on CCl(4) induced oxidant stress was examined in rats subsequently receiving a single lethal dose of CCl(4). Urinary 8-isoprostane, kidney and liver malondialdehyde and kidney glutathione levels increased following CCl(4) treatment, but only the rise in kidney malondialdehyde was significantly inhibited by colchicine pretreatment. Serum total antioxidant levels were significantly higher in the colchicine pretreatment group. (2) The long term effects of colchicine treatment on CCl(4) induced liver damage were investigated using liver histology and biochemical markers (hydroxyproline and type III procollagen peptide). Co-administration of colchicine with sub-lethal doses of CCl(4) over 10 weeks did not prevent progression to cirrhosis. However, rats made cirrhotic with repeated CCl(4) challenge and subsequently treated with colchicine for 12 months, all showed histological regression of cirrhosis. (3) The antioxidant effect of colchicine in vitro was evident only at very high concentrations compared to other plasma antioxidants. In summary, colchicine has only weak antioxidant properties, but does afford some protection against oxidative stress; more importantly, long term treatment with this drug may be of value in producing regression of established cirrhosis.  相似文献   

4.
Oxidative stress emerges as a key player in the ageing process. Controlled ozone administration is known to promote an oxidative preconditioning or adaptation to oxidative stress. The present study investigated whether prophylactic ozone administration could interfere with the age‐related changes in the heart and the hippocampus of rats. Four groups of rats, aged about 3 months old, were used. Group 1 (Prophylactic ozone group) received ozone/oxygen mixture by rectal insufflations (0.6 mg/kg) twice/week for the first 3 months, then once/week till the age of 15 months. Group 2 (Oxygen group) received oxygen as vehicle for ozone in a manner similar to group 1. Group 3 (Aged control group) was kept without any treatment until the age of 15 months. A fourth group of rats (Adult control group) was evaluated at 3 months of age to provide baseline data. Ozone alleviated age‐associated redox state imbalance as evidenced by reduction of lipid and protein oxidation markers, lessening of lipofuscin deposition, restoration of glutathione levels in both tissues and normalization of glutathione peroxidase activity in the heart tissue. Ozone also mitigated age‐associated energy failure in the heart and the hippocampus, improved cardiac cytosolic Ca2+ homeostasis and restored the attenuated Na+, K+‐ATPase activity in the hippocampus of aged rats. These data provide new evidence concerning the anti‐ageing potential of prophylactic ozone administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
ENA Actimineral Resource A (ENA-A) is alkaline water that is composed of refined edible cuttlefish bone and two different species of seaweed, Phymatolithon calcareum and Lithothamnion corallioides. In the present study, ENA-A was investigated as an antioxidant to protect against CCl(4)-induced oxidative stress and hepatotoxicity in rats. Liver injury was induced by either subacute or chronic CCl(4) administration, and the rats had free access to tap water mixed with 0% (control group) or 10% (v/v) ENA-A for 5 or 8?weeks. The results of histological examination and measurement of antioxidant activity showed that the reactive oxygen species production, lipid peroxidation, induction of CYP2E1 were decreased and the antioxidant activity, including glutathione and catalase production, was increased in the ENA-A groups as compared with the control group. On 2-DE gel analysis of the proteomes, 13 differentially expressed proteins were obtained in the ENA-A groups as compared with the control group. Antioxidant proteins, including glutathione S-transferase, kelch-like ECH-associated protein 1, and peroxiredoxin 1, were increased with hepatocyte nuclear factor 3-beta and serum albumin precursor, and kininogen precursor decreased more in the ENA-A groups than compared to the control group. In conclusion, our results suggest that ENA-A does indeed have some protective capabilities against CCl(4)-induced liver injury through its antioxidant function.  相似文献   

6.
Some biochemical effects determined on human blood after addition of a gas mixture composed of oxygen (approximately 96%) and ozone (approximately 4%) have been evaluated. Ozone was used in a mild concentration ranging between 0.21 and 1.68 mM. Within few minutes after rapid mixing of the equal gas-liquid volumes, the ozone was consumed because by instantaneously reacting with biomolecules, generating reactive oxygen species (particularly hydrogen peroxide) having very short lifetime and lipid oxidation products. The following results are oxygen-ozone dose dependent: (1) The pO(2) values have risen from about 40 up to 400 mmHg. (2) By testing the highest ozone concentration, the total antioxidant capacity of blood decreased within 1 min from 1.35 to 0.91 mM but regained its normal values within 20 min owing to the rapid reduction of oxidized antioxidants operated by erythrocytes. (3) Similarly, intraerythrocytic reduced glutathione after ozonation decreased from the initial value of 5.71 to 4.56 micromol/g Hb. (4) Both hemolysis and methemoglobin showed a negligible increase.  相似文献   

7.
The aim of this study was to investigate the effective role of silymarin either alone or in combination with chlorogenic acid and/or melatonin against the toxic impact of carbon tetrachloride (CCl4) induced cardiac infarction. CCl4 (l.2 ml/kg body weight) was administered as a single dose intraperitoneally. The results revealed that the administration of silymarin alone or in combination with chlorogenic acid (CGA) and/or melatonin for 21 consecutive days, 24 h after CCl4 injection to rats, markedly ameliorated the increases in serum markers of cardiac infarction, including troponin T and creatine kinase-MB (CK-MB), as well as increases in the pro-inflammatory biomarkers, including interleukin-6 (IL-6), interferon-γ (IFN-γ) in serum and tumor necrosis factor-α (TNF-α) and C-reactive protein in cardiac tissue compared to CCl4 intoxicated rats. The used agents also successfully modulated the alteration in vascular endothelial growth factor (VEGF) in serum and the oxidative DNA damage and the increase in the apoptosis marker caspase 3 in cardiac tissue in response to CCl4 toxicity. The present biochemical results are supported by histo-pathological examination. The current results proved that treatment with silymarin in combination with CGA and melatonin was the most effective one in ameliorating the toxicity of CCl4 induced cardiac damage and this may support the use of this combination as an effective drug to treat cardiac damage induced by toxic agents.  相似文献   

8.
9.
Oxidative stress is implicated in the pathophysiology of a number of chronic diseases including atherosclerosis, diabetes, cataracts and accelerated aging. The aim of this study was to elucidate the protective role of vitamin E supplementation when oxidative stress is induced by CCl4 administration, using the rat as a model. Rats were fed diets for four weeks either with or without dl-alpha-tocopherol acetate supplementation. Half of the rats (n = 9) from each of the diet groups were then challenged with CCl4 at the completion of the four week diet period. Plasma levels of 8-iso-PGF(2alpha), antioxidant micronutrients and antioxidant enzyme activities were measured to examine changes in oxidative stress subsequent to the supplementation of dl-alpha-tocopherol in the diet. Plasma alpha-tocopherol (vitamin E) concentrations were higher for the groups supplemented with dl-alpha-tocopherol acetate, however the supplemented diet group that was subsequently challenged with CCl4 had significantly lower (p <0.001) plasma alpha-tocopherol concentration than the dl-alpha-tocopherol acetate diet group that was not challenged with CCl4. Total plasma 8-iso-PGF(2alpha) concentration was elevated in diet groups challenged with CCl4, however, the concentration was significantly lower (p <0.001) when the diet was supplemented with dl-alpha-tocopherol acetate. The antioxidant enzymes were not influenced by either dietary alpha-tocopherol manipulation or by the inducement of oxidative stress with CCl4. Plasma concentrations of trans-retinol (vitamin A) were reduced by CCl4 administration in both the dl-alpha-tocopherol acetate supplemented and unsupplemented diet groups. The results of this study indicate that dl-alpha-tocopherol acetate supplementation was protective of lipid peroxidation when oxidative stress is induced by a pro-oxidant challenge such as CCl4.  相似文献   

10.
Arctium lappa Linne (burdock) is a perennial herb which is popularly cultivated as a vegetable. In order to evaluate its hepatoprotective effects, a group of rats (n = 10) was fed a liquid ethanol diet (4 g of absolute ethanol/ 80 ml of liquid basal diet) for 28 days and another group (n = 10) received a single intraperitoneal injection of 0.5 ml/kg carbon tetrachloride (CCl(4)) in order to potentiate the liver damage on the 21st day (1 day before the beginning of A. lappa treatment). Control group rats were given a liquid basal diet which did not contain absolute ethanol. When 300 mg/kg A. lappa was administered orally 3 times per day in both the 1-day and 7-day treatment groups, some biochemical and histopathological parameters were significantly altered, both in the ethanol group and the groups receiving ethanol supplemented with CCl(4). A. lappa significantly improved various pathological and biochemical parameters which were worsened by ethanol plus CCl(4)-induced liver damage, such as the ethanol plus CCl(4)-induced decreases in total cytochrome P-450 content and NADPH-cytochrome c reductase activity, increases in serum triglyceride levels and lipid peroxidation (the deleterious peroxidative and toxic malondialdehyde metabolite may be produced in quantity) and elevation of serum transaminase levels. It could even restore the glutathione content and affect the histopathological lesions. These results tended to imply that the hepatotoxicity induced by ethanol and potentiated by CCl(4) could be alleviated with 1 and 7 days of A. lappa treatment. The hepatoprotective mechanism of A. lappa could be attributed, at least in part, to its antioxidative activity, which decreases the oxidative stress of hepatocytes, or to other unknown protective mechanism(s).  相似文献   

11.
Carbon tetrachloride (CCl4) is a known environmental biohazard, which induces lipid peroxidation (LPO) and oxidative damage in rat liver. In this study, the hepatoprotective effect of Gossypitrin, a flavonoid extracted from Hibiscus elatus S.W, was investigated against the CCl4-induced in vivo hepatotoxicity. The levels of malondialdehyde (MDA) were assayed as an index of LPO and the levels of catalase (CAT) activity as a biomarker of oxidative damage. Leakage of aspartate aminotransferase (ALT) and lactate dehydrogenase (LDH), liver weight/body weight ratio as well as morphological parameters were used as signs of hepatotoxicity. CCl4 (1 ml/kg), intraperitoneally injected into rats, caused increased MDA production and CAT activity, and also a significant ALT and LDH leakage as compared to levels of these constituents in the control group. Changes in morphology, including steatosis, cells forming balloon cells and necrosis were evaluated in the hepatotoxin-induced damage. Treatment of rats with Gossypitrin (3.98, 5.97 and 8.95 mg/kg) 2 h before and 2 h after CCl4 injection, protected hepatocytes against cell injury induced by CCl4 and its efficacy as an antioxidant was similar to vitamin E (used as a reference antioxidant). These results are consistent with the conclusion that the toxicity of CCl4 is due to LPO and the generation of reactive oxygen species (ROS), and that Gossypitrin's protective effects relate to its direct radical scavenging ability and other antioxidative processes induced by its structure.  相似文献   

12.
Oxidative stress is believed to be involved in the pathophysiology of a number of chronic diseases including atherosclerosis, diabetes, and cataracts and to accelerate the aging process. The aim of this study was to elucidate the role of various dietary fats in the in vivo modulation of CCl(4) induced oxidative stress using rat as a model. Rats were raised on diets enriched with saturated (Beef Tallow), n-9 (Sunola oil), n-6 (Safflower oil) or n-3 (Flaxseed oil) fatty acids and exposed to elevated oxidative stress by administration of CCl(4.) Plasma concentration of 8-iso-PGF(2alpha), antioxidant micronutrients and antioxidant enzymes were measured to examine changes to oxidative stress subsequent to the administration of CCl(4). The fatty acid profiles of plasma and RBC membranes reflected the fats fed in the different diets. CCl(4) administration had no significant effect on fatty acid composition of plasma or RBC lipids. Plasma 8-iso-PGF(2alpha) concentrations were elevated by CCl(4) administration regardless of the dietary fat fed. Within the induced oxidative groups the 8-iso-PGF(2alpha) concentrations were highest in Safflower oil followed by Sunola oil, Tallow and finally Flaxseed oil. Induction of oxidative stress by CCl(4) administration was associated with a significant reduction in Vitamin A content reaching a significantly lower concentration (P <0.05) in the Tallow and Flaxseed oil groups. Vitamin E concentrations were significantly lower (p = 0.01) in the Safflower oil and the Flaxseed oil than in the Tallow diet group following CCl(4) administration. Superoxide Dismutase (SOD) and Glutathione Peroxidase (GSHPx) activities were not affected by dietary fat manipulation. The results of this study indicate that dietary fat can modulate lipid peroxidation and antioxidant defenses when exposed to a pro-oxidant challenge.  相似文献   

13.
Mitochondrial damage and oxidative stress are known to contribute to the pathogenesis of noise-induced hearing loss (NIHL). In this study, we examined the protective effect of O2/O3 mixture (ozone/oxygen) therapy against mitochondrial induced damage and oxidative stress by noise exposure in rat brain and cochlear. For this purpose, rats were divided into four groups: 1 – control group; 2 – noise-exposed group (100?dB); 3 – noise?+?O2/O3, and 4 – O2/O3 (30 µg/ml). After 14 d, animals were anesthetised. Rat brain and cochlear tissue were removed for evaluation of the histopathological damages, oxidative stress, and mitochondrial dysfunction in both tissues. Our findings indicated that noise caused pathological damage, oxidative stress, and mitochondrial dysfunction in rat brain and cochlear. Also, daily administration of an O2/O3 therapy (30 µg/ml intravenous) efficiently increased enzymatic and non-enzymatic antioxidant in brain and cochlear that this action led to inhibition of pathological damages, oxidative stress, reactive oxygen species formation, mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, and cytochrome c release resulting from noise. These findings suggest that the moderate O2/O3 therapy enhances the capacity of enzymatic and non-enzymatic antioxidant in brain and cochlear that protects against NIHL.  相似文献   

14.
Mitochondrial, endoplasmic reticular and plasma membrane fractions were isolated by a new method from control male Fischer 344 rats and rats given CCl4 by gavage. After 1 h of CCl4 treatment, rats were in glucose and pancreatic hormone balance but plasma levels of T3 and T4 were decreased 29 and 22%, respectively. After 24 hours of CCl4 treatment, rats were: hypoglycaemic and insulin and glucagon levels were increased 33- and 35-fold, respectively; total T4 levels were decreased 62%; while total T3 levels were normalized. In liver fractions from CCl4-treated rats, 1 h after CCl4 administration: (i) calcium binding was decreased 65% in the mitochondrial fraction, 66% in the endoplasmic reticular fraction and 46% in the plasma membrane fraction; (ii) calcium uptake was decreased 59% in the mitochondrial fraction, 46% in the endoplasmic reticular fraction and 37% in the plasma membrane fraction. After 24 h of CCl4 administration: (i) calcium binding was decreased 57% in the mitochondrial fraction, 50% in the endoplasmic reticular fraction and 71% in the plasma membrane fraction; (ii). calcium uptake was decreased 55% in the mitochondrial fraction, 17% in the endoplasmic reticular fraction and 53% in the plasma membrane fraction. In vitro studies indicated the plasma membrane calcium transport system to be rapidly (within a minute) and strongly (>90%) inhibited by CCl4. We conclude that CCl4 produces a differential inhibitory effect on the hepatocyte calcium pumps that are implicated with hepatocellular damage.  相似文献   

15.
The aim of this study was to examine the protective effects of melatonin against CCl4-induced hepatotoxicity in the rat. Twenty-four male Wistar rats were divided into three groups. Group I was used as a control. Rats in group II were injected every other day with CCl4 for 1 month, whereas rats in group III were injected every other day with CCl4 and melatonin for 1 month. At the end of the experiment, all animals were killed by decapitation and blood samples were obtained. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total and conjugated bilirubin levels were determined. For histopathological evaluation, livers of all rats were removed and processed for light microscopy. All serum biochemical parameters were significantly higher in animals treated with CCl4 than in the controls. When rats injected with CCl4 were treated with melatonin, significantly reduced elevations in serum biochemical parameters were found. In liver sections of the CCl4-injected group, necrosis, fibrosis, mononuclear cell infiltration, haemorrhage, fatty degeneration and formation of regenerative nodules were observed. Additionally, apoptotic figures, microvesicular steatosis and hydropic degeneration in hepatocytes were seen in this group. In contrast, the histopathological changes observed after administration of CCl4 were lost from rats treated with CCl4 and melatonin. Except for mild hydropic degeneration of the hepatocytes, a normal lobular appearance was seen in the livers of this group. The results of our study indicate that melatonin treatment prevents CCl4-induced liver damage in rats.  相似文献   

16.
The hepatic lesion produced as a result of oxidative stress is of wide occurrence. In the present study, the effect of tungsten on liver necrosis and fulminant hepatic failure (FHF) has been studied in rats treated with various compounds known to produce oxidative stress. Supplementation of animals with sodium tungstate for 7 weeks before the induction of liver injury by chemicals including thioacetamide (TAA), carbon tetrachloride (CCl(4)), or chloroform (CHCl(3)) could protect progression of hepatic injury. Various biochemical changes associated with liver damage and oxidative stress were measured. Hepatic malondialdehyde content, endogenous tripeptide, and reduced glutathione were measured as oxidative stress markers. The activity of xanthine oxidase, which generates reactive oxygen species (ROS) as a by-product, was also determined and found to be perturbed. Tungsten supplementation to rats caused a significant decrease in lipid peroxidation and lowered the levels of the biochemical markers of hepatic lesions produced by TAA, CCl(4) (CCl(4)), or CHCl(3). Tungsten could also cause an increase in the survival rate in rats receiving lethal doses of TAA, CCl(4), or CHCl(3). The protective effect of tungsten, however, is suggested to be limited to the conditions where the hepatic lesion is reported to be due to the generation of ROS. The progression of liver injury produced by the compounds causing oxidative stress without initiating the generation of free radicals such as bromobenzene (BB), or acetaminophen (AAP), could not be inhibited by tungsten. The possible mechanism explaining the role of oxyanionic form of tungsten in free radical-induced hepatic lesions is discussed.  相似文献   

17.
The aim of this study was to investigate possible protective effects of melatonin on carbon tetrachloride (CCl4)-induced renal damage in rats. A total of 24 animals were divided into three equal groups: the control rats received pure olive oil subcutaneously, rats in the second group were injected with CCl4 (0.5 ml kg-1, s.c. in olive oil) and rats in the third group were injected with CCl4 (0.5 ml kg-1) plus melatonin (25 mg kg-1, s.c. in 10% ethanol) every other day for 1 month. At the end of the experimental period, the animals were sacrificed and blood samples were collected. The kidneys were removed and weighed. Urea and creatinine levels were determined in blood samples. Histopathological examination of the kidney was performed using light microscopic methods. Administration of CCl4 significantly increased relative kidney weight (g per 100 g body weight) and decreased serum urea levels compared to controls (p<0.01). Melatonin treatment significantly (p<0.01) reduced relative kidney weight, and it produced a statistically equal (p=0.268) relative weight with the kidneys of control rats. CCl4 administration alone also caused histopathologically prominent damage in the kidney compared to the control group. Glomerular and tubular degeneration, interstitial mononuclear cell infiltration and fibrosis, vascular congestion around the tubules, and interstitial haemorrhage in perivascular areas were observed in the renal cortex and cortico-medullary border. However, the affect of CCl4 on the medulla was limited. Melatonin provided protection against CCl4-induced renal toxicity as was evident by histopathological evaluation. In view of the present findings, it is suggested that melatonin protects kidneys against CCl4 toxicity.  相似文献   

18.
Chronic renal failure (CRF) represents a world health problem. Ozone increases the endogenous antioxidant defense system, preserving the cell redox state. The aim of this study is to evaluate the effect of ozone/oxygen mixture in the renal function, morphology, and biochemical parameters, in an experimental model of CRF (subtotal nephrectomy). Ozone/oxygen mixture was applied daily, by rectal insufflation (0.5 mg/kg) for 15 sessions after the nephrectomy. Renal function was evaluated, as well as different biochemical parameters, at the beginning and at the end of the study (10 weeks). Renal plasmatic flow (RPF), glomerular filtration rate (GFR), the urine excretion index, and the sodium and potassium excretions (as a measurement of tubular function) in the ozone group were similar to those in Sham group. Nevertheless, nephrectomized rats without ozone (positive control group) showed the lowest RPF, GFR, and urine excretion figures, as well as tubular function. Animals treated with ozone showed systolic arterial pressure (SAP) figures lower than those in the positive control group, but higher values compared to Sham group. Serum creatinine values and protein excretion in 24 hours in the ozone group were decreased compared with nephrectomized rats, but were still higher than normal values. Histological study demonstrated that animals treated with ozone showed less number of lesions in comparison with nephrectomized rats. Thiobarbituric acid reactive substances were significantly increased in nephrectomized and ozone-treated nephrectomized rats in comparison with Sham group. In the positive control group, superoxide dismutase (SOD) and catalase (CAT) showed the lowest figures in comparison with the other groups. However, ozone/oxygen mixture induced a significant stimulation in the enzymatic activity of CAT, SOD, and glutathione peroxidase, as well as reduced glutathione in relation with Sham and positive control groups. In this animal model of CRF, ozone rectal administrations produced a delay in the advance of the disease, protecting the kidneys against vascular, hemorheological, and oxidative mechanisms. This behavior suggests ozone therapy has a protective effect on renal tissue by downregulation of the oxidative stress shown in CRF.  相似文献   

19.
A detailed analysis is presented of the time changes in the development of liver damage 6, 12, 24, 48 and 72 hours after i.p. administration of carbon tetrachloride [CCl4] in a dose of 0.75 ml, i.e. 1 200 mg/kg body weight to rats of both sexes. The severity of liver damage was assessed from the histological and biochemical changes of AST, ALT, alkaline phosphatase and GMT serum activity. From our experiments it follows that in male rats the level of transaminases increases earlier than in female rats, as early as 6 h after the administration of CCl4, reaching a maximum 12 h later. These changes prevail for a longer time period, the level of transaminases remaining increased even 72 h after CCl4 administration. In female rats the biochemical changes occur later reaching the maximum elevation of AST and ALT 24 h after CCl4 administration. The values slowly return to normal after 48 h, and after 72 h the levels of transaminases are identical with the control group. The above given biochemical results are in good agreement with the histological findings demonstrating a higher regenerative activity in female rats. This finding was also proved by specific liver DNA activity assay.  相似文献   

20.
Curcumin, an anti-inflammatory and antioxidant compound, was evaluated for its ability to suppress acute carbon tetrachloride-induced liver damage. Acute hepatotoxicity was induced by oral administration of CCl4 (4 g/kg, p.o.). Curcumin treatment (200 mg/kg, p.o.) was given before and 2 h after CCl4 administration. Indicators of necrosis (alanine aminotransferase) and cholestasis (gamma-glutamyl transpeptidase and bilirubins) resulted in significant increases after CCl4 intoxication, but these effects were prevented by curcumin treatment. As an indicator of oxidative stress, GSH was oxidized and the GSH/GSSG ratio decreased significantly by CCl4, but was preserved within normal values by curcumin. In addition to its antioxidants properties, curcumin is capable of preventing NF-kappaB activation and therefore to prevent the secretion of proinflammatory cytokines. Therefore, in this study we determined the concentrations of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6) mRNA, and NF-kappaB activation. CCl4-administered rats depicted significant increases in TNF-alpha, IL-1beta, and IL-6 production, while curcumin remarkably suppressed these mediators of inflammation in liver damage. These results were confirmed by measuring TNF-alpha, and IL-1beta protein production using Western Blot analysis. Accordingly, these proteins were increased by CCl4 and this effect was abolished by curcumin. Administration of CCl4 induced the translocation of NF-kappaB to the nucleus; CCl4 induced NF-kappaB DNA binding activity was blocked by curcumin treatment. These findings suggest that curcumin prevents acute liver damage by at least two mechanisms: acting as an antioxidant and by inhibiting NF-kappaB activation and thus production of proinflammatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号