首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and biological evaluation of a new family of diterpenes, represented by structures 2 and 3, is presented. These compounds constitute isomeric analogues of acanthoic acid (1) and were examined as potent anti-inflammatory agents. Among them, methyl ester 12 exhibited a low non-specific cytotoxicity, inhibited TNF-alpha synthesis and displayed good specificity in suppressing cytokine expression.  相似文献   

2.
3.
Oleanolic acid (OA), a pentacyclic triterpene acid, has been reported to possess inducing activity of hepatic metallothionein (MT). However, the mechanism underlying its effects is unknown. This study investigated the effects of OA on the regulation of MT expression in an in vitro model. OA that was added directly to Hepa-1c1c7 cells had no effect on MT induction. However, MT and its mRNA levels increased markedly when the Hepa-1c1c7 cells were cultured with the OA-treated conditioned media from the RAW 264.7 cells. Co-treating the RAW 264.7 cells with OA and pentoxifylline, a TNF-alpha synthesis inhibitor, resulted in a decrease in the effects of OA on the MT induction. In the OA-exposed RAW 264.7 cell cultures, production and mRNA levels of TNF-alpha and IL-6 were increased. However, the MT induction activity was inhibited when antibodies to TNF-alpha and/or IL-6 were added to the OA-treated conditioned media from the RAW 264.7 cells. These results suggest that the up-regulation of MT expression by OA was mediated by the TNF-alpha and IL-6 released from UA-activated macrophages.  相似文献   

4.
5.
Among various biochemical and biological activities of tea polyphenols, we believe inhibition of the expression and release of tumor necrosis factor-alpha (TNF-alpha) is crucial, since our study with TNF-alpha-deficient mice has revealed that TNF-alpha is an essential factor in tumor promotion. We found that EGCG dose-dependently inhibited AP-1 and NF-kappaB activation in BALB/3T3 cells treated with okadaic acid, resulting in inhibition of TNF-alpha gene expression. Furthermore, treatment with 0.1% green tea extract in drinking water reduced TNF-alpha gene expression as well as TNF-alpha protein level in the lung of TNF-alpha transgenic mice; and IL-1beta and IL-10 gene expression in the lung was also inhibited by treatment with green tea extract, indicating that green tea inhibits both TNF-alpha and the cytokines induced by TNF-alpha in organs. We recently found synergistic effects of EGCG and cancer preventive agents such as tamoxifen and sulindac, on cancer preventive activity. Taken together, the results show that green tea is efficacious as a non-toxic cancer preventive for humans.  相似文献   

6.
7.
We evaluated the effects of binary combinations of four cytokines on production of the positive acute phase proteins alpha-1 antichymotrypsin, haptoglobin and fibrinogen, and the negative acute phase proteins albumin and alpha-fetoprotein (AFP) in two human hepatoma cell lines. The effects of the cytokine combinations on the five proteins varied; each protein exhibited a unique and specific pattern of response to the cytokine combinations. In Hep G2 cells, antichymotrypsin was induced by all four cytokines, IL-6, IL-1, TNF-alpha, and transforming growth factor beta 1 alone, and their effects in binary combinations could be attributed to additive or minimally synergistic interactions. Fibrinogen was induced only by IL-6 and this induction was inhibited by IL-1 alpha, TNF-alpha or transforming growth factor beta 1. Haptoglobin was also induced only by IL-6, but TNF-alpha was the only cytokine that inhibited this induction at all concentrations of IL-6. Each of the four cytokines alone down regulated production of AFP and albumin. However, binary combinations of the four cytokines were simply additive, for the most part, in inhibiting AFP production, whereas the inhibitory effects of combinations of cytokines on albumin production differed significantly from simple additive effects. These observations, taken together with studies of effects of cytokine combinations on other acute phase proteins, indicate that the various acute phase proteins respond differently to different combinations of cytokines and that the potential exists for highly specific regulation of synthesis of individual plasma proteins by cytokine interactions. These findings imply that the acute phase response in vivo represents the integrated sum of multiple, separately regulated changes in gene expression.  相似文献   

8.
Carboxylic acids have various biological activities and play critical roles in cellular metabolic pathways such as the tricarboxylic acid (TCA) cycle. It has been shown that some carboxylic acids induce cell proliferation and production of cytokines or growth factors. However, there have been no reports on effects of carboxylic acids on hepatocyte growth factor (HGF) expression. In this study, we found that only maleic acid among various carboxylic acids examined markedly induced HGF production from human dermal fibroblasts. Maleic acid also induced HGF production from human lung fibroblasts and neuroblastoma cells. The stimulatory effect was accompanied by upregulation of HGF gene expression. Increase in phosphorylation of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) but not in phosphorylation of p38 was observed from 6 h and up to 24 h after maleic acid addition. The ERK kinase inhibitor PD98059 and the JNK inhibitor SP600125 potently inhibited maleic acid-induced HGF production, while the p38 inhibitor SB203580 did not significantly inhibit the production. The protein synthesis inhibitor cycloheximide completely inhibited upregulation of HGF mRNA induced by maleic acid but superinduced HGF mRNA expression upregulated by 12-O-tetradecanoylphorbol 13-acetate (TPA). These results suggest that maleic acid indirectly induced HGF expression from human dermal fibroblasts through activation of ERK and JNK and that de novo protein synthesis is required for maleic acid-induced upregulation of HGF mRNA.  相似文献   

9.
10.
11.
12.
Wu R  Zhou M  Wang P 《Regulatory peptides》2003,112(1-3):19-26
Recent studies have demonstrated that administration of adrenomedullin (AM) and AM binding protein-1 (AMBP-1) maintains cardiovascular stability and reduces mortality in sepsis. However, the mechanism responsible for the beneficial effect of AM/AMBP-1 remains unknown. The aim of this study therefore was to determine whether AM/AMBP-1 directly reduces lipopolysaccharide (LPS)-induced secretion of TNF-alpha from murine macrophage-like cell line RAW 264.7 cells and Kupffer cells isolated from normal rats. TNF-alpha release and gene expression were determined by ELISA and RT-PCR, respectively. The results indicated that LPS increased TNF-alpha production from RAW cells by 38-63-fold in a dose- and time-dependent manner. Although incubation with AM or AMBP-1 alone inhibited LPS-induced TNF-alpha release by 14-22% and 13-22%, respectively, AM and AMBP-1 in combination significantly suppressed TNF-alpha production (by 24-35%). Moreover, the upregulated TNF-alpha mRNA by LPS stimulation was significantly reduced by AM/AMBP-1, but not by AM or AMBP-1 alone. In the Kupffer cells primary culture, AM or AMBP-1 alone inhibited LPS-induced TNF-alpha production by 52% and 44%, respectively. Co-culture with AM/AMBP-1 markedly reduced TNF-alpha production (by 90%). Moreover, AM or AMBP-1 alone decreased TNF-alpha mRNA expression by 41% and 36%, respectively, whereas the combination of AM/AMBP-1 decreased its expression by 63%. These results indicate that AM and AMBP-1 in combination effectively suppress LPS-induced TNF-alpha expression and release especially from primary cultured Kupffer cells, suggesting that the downregulatory effect of AM/AMBP-1 on proinflammatory cytokine TNF-alpha may represent a mechanism responsible for their beneficial effects in preventing inflammatory responses and tissue damage in sepsis.  相似文献   

13.
Airway epithelial cells are a rich source of eosinophil-selective C-C chemokines. We investigated whether cytokines and the topical glucocorticoid budesonide differentially regulate RANTES, monocyte chemoattractant protein-4 (MCP-4), and eotaxin mRNA and protein expression in the human bronchial epithelial cell line BEAS-2B and in primary human bronchial epithelial cells by Northern blot analysis and ELISAs. Eotaxin and MCP-4 mRNA expression induced by TNF-alpha alone or in combination with IFN-gamma was near-maximal after 1 h, peaked at 4 and 8 h, respectively, remained unchanged up to 24 h, and was protein synthesis independent. In contrast, RANTES mRNA was detectable only after 2 h and slowly increased to a peak at 24 h, and was protein synthesis dependent. Induction of eotaxin and MCP-4 mRNA showed a 10- to 100-fold greater sensitivity to TNF-alpha compared with RANTES mRNA. IL-4 and IFN-gamma had selective effects on chemokine expression; IL-4 selectively up-regulated the expression of eotaxin and MCP-4 and potentiated TNF-alpha-induced eotaxin, while IFN-gamma markedly potentiated only the TNF-alpha-induced expression of RANTES. Although budesonide inhibited the expression of chemokine mRNA to a variable extent, it effectively inhibited production of eotaxin and RANTES protein. Budesonide inhibited both RANTES- and eotaxin promoter-driven reporter gene activity. Budesonide also selectively accelerated the decay of eotaxin and MCP-4 mRNA. These results point to IL-4 as a possible mediator by which Th2 cells may induce selective production of C-C chemokines from epithelium and indicate that glucocorticoid inhibit chemokine expression through multiple mechanisms of action.  相似文献   

14.
Endothelial cells are among the main physiological targets of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). In endothelial cells TNF-alpha elicits a broad spectrum of biological effects including differentiation, proliferation and apoptosis. alpha1-antitrypsin (AAT), an endogenous inhibitor of serine proteases plays a vital role in protecting host tissue from proteolytic injury at sites of inflammation. Recently, it has been shown that AAT can be internalized by pulmonary endothelial cells, raising speculation that it may modulate endothelial cell function in addition to suppressing protease activity. Using Affymetrix microarray technology, real time PCR and ELISA methods we have investigated the effects of AAT on un-stimulated and TNF-alpha stimulated human primary lung microvascular endothelial cell gene expression and protein secretion. We find that AAT and TNF-alpha generally induced expression of distinct gene families with AAT exhibiting little activity in terms of inflammatory gene expression. Approximately 25% of genes up regulated by TNF-alpha were inhibited by co-administration of AAT including TNF-alpha-induced self expression. Surprisingly, the effects of AAT on TNF-alpha-induced self expression was inhibited equally well by oxidized AAT, a modified form of AAT, which lacks serine protease inhibitor activity. Overall, the pattern of gene expression regulated by native and oxidized AAT was similar with neither inducing pro-inflammatory gene expression. These findings suggest that inhibitory effects of native and oxidized forms of AAT on TNF-alpha stimulated gene expression may play an important role in limiting the uncontrolled endothelial cell activation and vascular injury in inflammatory disease.  相似文献   

15.
Obesity-related disorders are associated with the development of ischemic heart disease. Adiponectin is a circulating adipose-derived cytokine that is downregulated in obese individuals and after myocardial infarction. Here, we examine the role of adiponectin in myocardial remodeling in response to acute injury. Ischemia-reperfusion in adiponectin-deficient (APN-KO) mice resulted in increased myocardial infarct size, myocardial apoptosis and tumor necrosis factor (TNF)-alpha expression compared with wild-type mice. Administration of adiponectin diminished infarct size, apoptosis and TNF-alpha production in both APN-KO and wild-type mice. In cultured cardiac cells, adiponectin inhibited apoptosis and TNF-alpha production. Dominant negative AMP-activated protein kinase (AMPK) reversed the inhibitory effects of adiponectin on apoptosis but had no effect on the suppressive effect of adiponectin on TNF-alpha production. Adiponectin induced cyclooxygenase (COX)-2-dependent synthesis of prostaglandin E(2) in cardiac cells, and COX-2 inhibition reversed the inhibitory effects of adiponectin on TNF-alpha production and infarct size. These data suggest that adiponectin protects the heart from ischemia-reperfusion injury through both AMPK- and COX-2-dependent mechanisms.  相似文献   

16.
17.
Suppression of host lymphoproliferative responses to mitogens and Ag is characteristically seen during acute infection with the protozoan parasite Trypanosoma cruzi. We investigated the reciprocal regulation of prostaglandins (PG), TNF-alpha, and nitric oxide (NO) production and their effects on cytokine production and lymphoproliferative responses to parasite Ag and to Con A by spleen cells (SC) from T.-cruzi-infected mice. Large amounts of PGE2, TNF-alpha, and NO were produced during infection. TNF-alpha stimulated PG and NO synthesis, while both mediators inhibited TNF-alpha synthesis. Blocking PG also reduced NO synthesis indicating that PG stimulate NO production. Treatment with indomethacin or NMLA stimulated lymphoproliferation on days 6 and 22 of infection; on day 14, when suppression of proliferation and NO production was maximal, combined inhibition of NO and PG production restored parasite Ag specific and Con A proliferative responses. Blocking PG or NO production increased IL-2, IFN-gamma, and TNF-alpha, but not IL-12 production by SC; IL-10 levels were not reduced. Indomethacin-treated infected mice had higher mortality compared to untreated infected animals. The data indicate that PG, together with NO and TNF-alpha, participate in a complex circuit that controls lymphoproliferative and cytokine responses in T. cruzi infection.  相似文献   

18.
19.
TNF-alpha plays a pivotal role in inflammation processes which are mainly regulated by endothelial cells. While TNF-alpha induces apoptosis of several cell types like tumor cells, endothelial cells are resistant to TNFa mediated cell death. The cytotoxic effects of TNF-alpha on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that de novo RNA or protein synthesis protect cells from TNF-alpha cytotoxicity, presumably by NF-kappaB mediated induction of protective genes. However, the cytoprotective genes involved in NF-kappaB dependent endothelial cell survival have not been sufficiently identified. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify rarely transcribed TNF-alpha inducible genes in human arterial endothelial cells related to cell survival and cell cycle. The TNF-alpha-induced expression of the RNA binding protein p54(nrb) and the 14-3-3 protein HS1 as shown here for the first time may contribute to the TNF-alpha mediated cell protection of endothelial cells. These genes have been shown to play pivotal roles in cell survival and cell cycle control in different experimental settings. The concerted expression of these genes together with other genes related to cell protection and cell cycle like DnaJ, p21(cip1) and the ubiquitin activating enzyme E1 demonstrates the identification of new genes in the context of TNF-alpha induced gene expression patterns mediating the prosurvival effect of TNF-alpha in endothelial cells.  相似文献   

20.
Previous studies have shown that activation of the RON receptor tyrosine kinase inhibits inducible NO production in murine peritoneal macrophages. The purpose of this study is to determine whether inflammatory mediators such as LPS, IFN-gamma, and TNF-alpha regulate RON expression. Western blot analysis showed that RON expression is reduced in peritoneal macrophages collected from mice injected with a low dose of LPS. The inhibition was seen as early as 8 h after LPS challenge. Experiments in vitro also demonstrated that the levels of the RON mRNA and protein are diminished in cultured peritoneal macrophages following LPS stimulation. TNF-alpha plus IFN-gamma abrogated macrophage RON expression, although individual cytokines had no significant effect. Because LPS and TNF-alpha plus IFN-gamma induce NO production, we reasoned that NO might be involved in the RON inhibition. Two NO donors, S-nitroglutathione (GSNO) and (+/-)-S-nitroso-N-acetylpenicillamine (SNAP), directly inhibited macrophage RON expression when added to the cell cultures. Blocking NO production by NO inhibitors like TGF-beta prevented the LPS-mediated inhibitory effect. In Raw264.7 cells transiently transfected with a report vector, GSNO or SNAP inhibited the luciferase activities driven by the RON gene promoter. Moreover, GSNO or SNAP inhibited the macrophage-stimulating protein-induced RON phosphorylation and macrophage migration. We concluded from these data that RON expression in macrophages is regulated during inflammation. LPS and TNF-alpha plus IFN-gamma are capable of down-regulating RON expression through induction of NO production. The inhibitory effect of NO is mediated by suppression of the RON gene promoter activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号