首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pro-inflammatory cytokines are involved in the pathogenesis of many inflammatory diseases, and the excessive expression of many of them is normally counteracted by glucocorticoids (GCs), which are steroids that bind to the glucocorticoid receptor (GR). Hence, GCs are potent inhibitors of inflammation, and they are widely used to treat inflammatory diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease. However, despite the success of GC therapy, many patients show some degree of GC unresponsiveness, called GC resistance (GCR). This is a serious problem because it limits the full therapeutic exploitation of the anti-inflammatory power of GCs. Patients with reduced GC responses often have higher cytokine levels, and there is a complex interplay between GCs and cytokines: GCs downregulate pro-inflammatory cytokines while cytokines limit GC action. Treatment of inflammatory diseases with GCs is successful when GCs dominate. But when cytokines overrule the anti-inflammatory actions of GCs, patients become GC insensitive. New insights into the molecular mechanisms of GR-mediated actions and GCR are needed for the design of more effective GC-based therapies.  相似文献   

2.
Glucocorticoids (GCs) are steroid hormones that have inflammatory and immunosuppressive effects on a wide variety of cells. They are used as therapy for inflammatory disease and as a common agent against edema. The blood brain barrier (BBB), comprising microvascular endothelial cells, serves as a permeability screen between the blood and the brain. As such, it maintains homeostasis of the central nervous system (CNS). In many CNS disorders, BBB integrity is compromised. GC treatment has been demonstrated to improve the tightness of the BBB. The responses and effects of GCs are mediated by the ubiquitous GC receptor (GR). Ligand-bound GR recognizes and binds to the GC response element located within the promoter region of target genes. Transactivation of certain target genes leads to improved barrier properties of endothelial cells. In this review, we deal with the role of GCs in endothelial cell barrier function. First, we describe the mechanisms of GC action at the molecular level. Next, we discuss the regulation of the BBB by GCs, with emphasis on genes targeted by GCs such as occludin, claudins and VE-cadherin. Finally, we present currently available GC therapeutic strategies and their limitations.  相似文献   

3.
Shpakov AO 《Tsitologiia》2007,49(8):617-630
Guanylyl cyclases (GCs), catalyzing the synthesis of the second messenger cGMP, are key elements of the signaling systems of animals of different phylogenetic levels including unicellular eukaryotes. In the review the literature data concerning unusual GCs observed in unicellular eukaryotes and having the structural-functional organization and topology similar to those of mammalian membrane-bound adenylyl cyclases, are analyzed. Among these GCs there are bifunctional membrane-bound GCs of ciliates and Plasmodium, which have both C-terminal cyclase domain related to mammalian adenylyl cyclases and N-terminal domain with ten membrane-spanning regions homologous to P-type ATPases. The developed by the author comparative analysis of primary structures of GC ATPase domains showed that the domains are high conservative and the motifs, which are closely linked to functional activity of ATPase transporters, are preserved in the domains. It is suggested that ATPase domains carry out either receptor or regulatory functions in GC molecules. Dual substrate specificity of cyclases of unicellular organisms and its possible role in revealing of GC activity in fungi and trypanosomes, lacking GC encoded genes, are discussed. The molecular mechanisms of the functioning of GCs, the regulation of GC activity by different agents, and the participation of these enzymes in control of the processes, such as chemotaxis, aggregation, movement, gametogenesis and photophobis response, are analyzed.  相似文献   

4.
Central obesity is associated with insulin resistance and dyslipidemia. Thus, the mechanisms that control fat distribution and its impact on systemic metabolism have importance for understanding the risk for diabetes and cardiovascular disease. Hypercortisolemia at the systemic (Cushing's syndrome) or local levels (due to adipose-specific overproduction via 11β-hydroxysteroid dehydrogenase 1) results in the preferential expansion of central, especially visceral fat depots. At the same time, peripheral subcutaneous depots can become depleted. The biochemical and molecular mechanisms underlying the depot-specific actions of glucocorticoids (GCs) on adipose tissue function remain poorly understood. GCs exert pleiotropic effects on adipocyte metabolic, endocrine and immune functions, and dampen adipose tissue inflammation. GCs also regulate multiple steps in the process of adipogenesis. Acting synergistically with insulin, GCs increase the expression of numerous genes involved in fat deposition. Variable effects of GC on lipolysis are reported, and GC can improve or impair insulin action depending on the experimental conditions. Thus, the net effect of GC on fat storage appears to depend on the physiologic context. The preferential effects of GC on visceral adipose tissue have been linked to higher cortisol production and glucocorticoid receptor expression, but the molecular details of the depot-dependent actions of GCs are only beginning to be understood. In addition, increasing evidence underlines the importance of circadian variations in GCs in relationship to the timing of meals for determining their anabolic actions on the adipocyte. In summary, although the molecular mechanisms remain to be fully elucidated, there is increasing evidence that GCs have multiple, depot-dependent effects on adipocyte gene expression and metabolism that promote central fat deposition. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

5.
Kunz L  Roggors C  Mayerhofer A 《Life sciences》2007,80(24-25):2195-2198
Acetylcholine (ACh) may be an ovarian signaling molecule, since ACh is produced by non-neuronal granulosa cells (GCs) derived from the antral follicle, and likely also by their in vivo counterparts in the growing follicle. Furthermore, muscarinic ACh receptors (MR) are present in GC membranes and in cultured human GCs a number of MR-mediated actions have been described, including regulation of proliferation and gap junctional communication. Importantly, muscarinic stimulation elevates intracellular calcium levels, thereby opening a calcium-activated potassium channel (BK(Ca)) and causing membrane hyperpolarization. In the course of electrophysiological experiments with human GCs we also observed a reversible inhibitory action of an ACh analogue (carbachol) on an outward potassium current. This current is reminiscent of a so-called M-current described in neuronal systems, of which muscarinic regulation is well-known. Indeed, the current is sensitive to the specific KCNQ blocker XE991 and a possible underlying channel, KCNQ1 (K(v)7.1/K(v)LQT1) was detected by RT-PCR in GCs and by immunohistochemistry in large ovarian follicles. Pharmacological inhibition of the channel by XE991 blocked gonadotropin-stimulated steroid production and increased cell proliferation, i.e. fundamental processes of GCs in the ovary. Assuming a similar effect of ACh in vivo, this channel may be a pivotal regulator of physiological GC function linked to actions of the novel intraovarian signaling molecule ACh.  相似文献   

6.
Löwenberg M  Stahn C  Hommes DW  Buttgereit F 《Steroids》2008,73(9-10):1025-1029
Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressant agents. Unfortunately, they also produce serious side effects that limit their usage. This discrepancy is the driving force for the intensive search for novel GC receptor ligands with a better benefit-risk ratio as compared to conventional GCs. A better understanding of the molecular mode of GC action might result in the identification of novel drug targets. Genomic GC effects are mediated by transrepression or transactivation, the latter being largely responsible for GC side effects. We here discuss novel GC receptor ligands, such as selective glucocorticoid receptor agonists (SEGRAs), which might optimize genomic GC effects as they preferentially induce transrepression with little or no transactivating activity. In addition to genomic GC effects, GCs also produce rapid genomic-independent activities, termed nongenomic, and we here review the possible implications of a recently reported mechanism underlying nongenomic GC-induced immunosuppression in T cells. It was shown that the synthetic GC dexamethasone targets membrane-bound GC receptors leading to impaired T cell receptor signaling. As a consequence, membrane-linked GC receptors might be a potential candidate target for GC therapy. The ultimate goal is to convert these molecular insights into new GC receptor modulators with an improved therapeutic index.  相似文献   

7.
High-dose glucocorticoid (GC) therapy is widely used to treat multiple sclerosis (MS), but the underlying mechanisms remain debatable. In this study, we investigated the impact of GC administration on experimental autoimmune encephalomyelitis using different GC receptor (GR)-deficient mutants. Heterozygous GR knockout mice were less sensitive to dexamethasone therapy, indicating that the expression level of the receptor determines therapeutic efficacy. Mice reconstituted with homozygous GR knockout fetal liver cells showed an earlier onset of the disease and were largely refractory to GC treatment, indicating that the GR in hematopoietic cells is essential for the beneficial effects of endogenous GCs and dexamethasone. Using cell-type specific GR-deficient mice, we could demonstrate that GCs mainly act on T cells, while modulation of macrophage function was largely dispensable in this context. The therapeutic effects were achieved through induction of apoptosis and down-regulation of cell adhesion molecules in peripheral T(H)17 and bystander T cells, while similar effects were not observed within the spinal cord. In addition, dexamethasone inhibited T cell migration into the CNS, confirming that peripheral but not CNS-residing T lymphocytes are the essential targets of GCs. Collectively, our findings reveal a highly selective mechanism of GC action in experimental autoimmune encephalomyelitis and presumably multiple sclerosis.  相似文献   

8.
Glucocorticoids (GCs) are required by many kinds of organs, tissues and cells for initiation or maintenance of their specific functions in vivo and in vitro. It is noticeable that most of these GC actions can be induced at much lower levels of dosage or concentration than the well-known actions of the steroids in gluconeogenesis, immune suppression and anti-inflammation. Such "differentiation-stimulating" actions of GC are regarded as main physiological roles of the steroid.  相似文献   

9.

Background

Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively.

Results

Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-γ and an increase in IL-5 production, respectively.

Conclusions

Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders.  相似文献   

10.
Glucocorticoids (GCs) play an essential role in the maintenance of homeostasis. In normal circumstances their secretion is tightly regulated by a complex servo mechanism through which the steroids suppress the synthesis and release of ACTH and its hypothalamic releasing factors (CRH and AVP) and thereby reduce the positive drive to the adrenal cortex. The feedback actions of GCs on hormone release develop rapidly (within minutes), well before any changes in hormone synthesis are apparent. By using immunoneutralization, gene targeting and pharmacological strategies in in vivo and in vitro models, we have identified annexin 1, a Ca(2+)- and phospholipid-binding protein, as a key mediator of the early inhibitory actions of GCs on peptide release. This brief review outlines this work and describes molecular and cellular studies which have provided insight into the mechanism of annexin 1-dependent GC signalling in the neuroendocrine system.  相似文献   

11.
12.
During neural circuit development, attractive or repulsive guidance cue molecules direct growth cones (GCs) to their targets by eliciting cytoskeletal remodeling, which is reflected in their morphology. The experimental power of in vitro neuronal cultures to assay this process and its molecular mechanisms is well established, however, a method to rapidly find and quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies and measures many morphological parameters of GCs in 2D explant culture images. These measurements are then subjected to principle component analysis and k-means clustering to mathematically classify the GCs as “collapsed” or “extended”. The morphological parameters measured for each GC are found to be significantly different between collapsed and extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as human observers. Application of a known collapse-inducing ligand results in significant changes in all parameters, resulting in an increase in ‘collapsed’ GCs determined by k-means clustering, as expected. Our strategy provides a powerful tool for exploring the relationship between GC morphology and guidance cue signaling, which in particular will greatly facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or any other experimental manipulation in the context of an in vitro axon guidance assay.  相似文献   

13.
14.

Background  

Glucocorticoids (GC) represent the core treatment modality for many inflammatory diseases. Its mode of action is difficult to grasp, not least because it includes direct modulation of many components of the extracellular matrix as well as complex anti-inflammatory effects. Protein expression profile of skin proteins is being changed with topical application of GC, however, the knowledge about singular markers in this regard is only patchy and collaboration is ill defined.  相似文献   

15.
《Endocrine practice》2022,28(10):1100-1106
ObjectiveSince January 2020, the highly contagious novel coronavirus SARS-CoV-2 has caused a global pandemic. Severe COVID-19 leads to a massive release of proinflammatory mediators, leading to diffuse damage to the lung parenchyma, and the development of acute respiratory distress syndrome. Treatment with the highly potent glucocorticoid (GC) dexamethasone was found to be effective in reducing mortality in severely affected patients.MethodsTo review the effects of glucocorticoids in the context of COVID-19 we performed a literature search in the PubMed database using the terms COVID-19 and glucocorticoid treatment. We identified 1429 article publications related to COVID-19 and glucocorticoid published from 1.1.2020 to the present including 238 review articles and 36 Randomized Controlled Trials. From these studies, we retrieved 13 Randomized Controlled Trials and 86 review articles that were relevant to our review topics. We focused on the recent literature dealing with glucocorticoid metabolism in critically ill patients and investigating the effects of glucocorticoid therapy on the immune system in COVID-19 patients with severe lung injury.ResultsIn our review, we have discussed the regulation of the hypothalamic-pituitary-adrenal axis in patients with critical illness, selection of a specific GC for critical illness-related GC insufficiency, and recent studies that investigated hypothalamic-pituitary-adrenal dysfunction in patients with COVID-19. We have also addressed the specific activation of the immune system with chronic endogenous glucocorticoid excess, as seen in patients with Cushing syndrome, and, finally, we have discussed immune activation due to coronavirus infection and the possible mechanisms leading to improved outcomes in patients with COVID-19 treated with GCs.ConclusionFor clinical endocrinologists prescribing GCs for their patients, a precise understanding of both the molecular- and cellular-level mechanisms of endogenous and exogenous GCs is imperative, including timing of administration, dosage, duration of treatment, and specific formulations of GCs.  相似文献   

16.
Novel glucocorticoid effects on acute inflammation in the CNS   总被引:10,自引:0,他引:10  
The CNS can mount an inflammatory reaction to excitotoxic insults that contributes to the emerging brain damage. Therefore, anti-inflammatory drugs should be beneficial in neurological insults. In contrast, glucocorticoids (GCs), while known for their anti-inflammatory effects, can exacerbate neurotoxicity in the hippocampus after excitotoxic insults. We investigated the effect of GCs on the inflammatory response after a neurological insult. Intact control (INT; intact stress response GC profile), adrenalectomized/GC-supplemented (ADX; low basal GC profile) and GC-treated (COR; chronically high GC profile) rats were injected with kainic acid into the hippocampal CA3 region. Lesion size was determined 8-72 h later. The inflammatory response was characterized using immunohistochemistry, RNAse protection assay and ELISA. The INT and COR rats developed larger CA3 lesions than ADX rats. We found that GCs surprisingly caused an increase in relative numbers of inflammatory cells (granulocytes, monocytes/macrophages and microglia). Additionally, mRNA and protein (IL-1beta and TNF-alpha) levels of the pro-inflammatory cytokines IL-1alpha, IL-1beta and TNF-alpha were elevated in COR rats compared with INT and ADX rats. These data strongly question the traditional view of GCs being uniformly anti-inflammatory and could further explain how GCs worsen the outcome of neurological insults.  相似文献   

17.
The immunomodulatory effects of glucocorticoids (GCs) have been described as bimodal, with high levels of GCs exerting immunosuppressive effects and low doses of GCs being immunopermissive. While the mechanisms used by GCs to achieve immunosuppression have been investigated intensely, the molecular mechanisms underlying the permissive effects of GCs remain uncharacterized. Herein, we demonstrate that GC conditioning during the differentiation of myeloid progenitors into macrophages (Mphis) results in their enhanced LPS responsiveness, demonstrated by an overexpression of the inflammatory cytokines TNF-alpha, IL-6, and IL-12. Inflammatory cytokine overexpression resulted from an increased activation of NF-kappaB and the MAPK signaling cascade and a reduced activation of the PI3K-Akt pathway following LPS stimulation. GC conditioning during Mphi differentiation induced an increase in the expression of SHIP1, a phosphatase that negatively regulates the PI3K signaling pathway. Small interfering RNA-mediated knockdown of SHIP1 expression increased PI3K-dependent Akt activation and subsequently decreased inflammatory cytokine expression, suggesting GC-mediated up-regulation of SHIP1 expression is responsible for the augmentation in inflammatory cytokine production following LPS stimulation. We also show that splenic Mphis purified from normal mice that were implanted with timed-release GC pellets exhibited an enhanced LPS responsiveness and increased SHIP1 expression, indicating that GCs can regulate SHIP1 expression in vivo. Our results suggest that minor fluctuations in physiological levels of endogenous GCs can program endotoxin-responsive hemopoietic cells during their differentiation by regulating their sensitivity to stimulation.  相似文献   

18.
Inhibition of the c-Jun N-terminal kinase (JNK) pathway by glucocorticoids (GCs) results in AP-1 repression. GC antagonism of AP-1 relies mainly on the transrepression function of the GC receptor (GR) and mediates essential physiological and pharmacological actions. Here we show that GCs induce the disassembly of JNK from mitogen-activated protein kinase kinase 7 (MKK7) by promoting its association with GR. Moreover, we have characterized a hormone-regulated JNK docking site in the GR ligand-binding domain that mediates GR-JNK interaction. The binding of GR to JNK is required for inhibition of JNK activation and induction of inactive JNK nuclear transfer by GCs. The dissociation of these two hormone actions shows that JNK nuclear transfer is dispensable for the downregulation of JNK activation by GCs. Nonetheless, nuclear accumulation of inactive JNK may still be relevant for enhancing the repression of AP-1 activity by GCs. In this regard, chromatin immunoprecipitation assays show that GC-induced GR-JNK association correlates with an increase in the loading of inactive JNK on the AP-1-bound response elements of the c-jun gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号