首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
tmRNA and SmpB are the main participants of trans-translation, a process which rescues the ribosome blocked during translation of non-stop mRNA. While a one-to-one stoichiometry of tmRNA to the ribosome is generally accepted, the number of SmpB molecules in the complex is still under question. We have isolated tmRNA-ribosome complexes blocked at different steps of the tmRNA path through the ribosome and analyzed the stoichiometry of the complexes. Ribosome, tmRNA and SmpB were found in equimolar amount in the tmRNA-ribosome complexes stopped at the position of the 2nd, 4th, 5th or the 11th codons of the coding part of the tmRNA.  相似文献   

2.
If a ribosome shifts to an alternative reading frame during translation, the information in the message is usually lost. We have selected mutants of Salmonella typhimurium with alterations in tRNAcmo5UGGPro that cause increased frameshifting when present in the ribosomal P-site. In 108 such mutants, two parts of the tRNA molecule are altered: the anticodon stem and the D-arm, including its tertiary interactions with the variable arm. Some of these alterations in tRNAcmo5UGGPro are in close proximity to ribosomal components in the P-site. The crystal structure of the 30S subunit suggests that the C-terminal end of ribosomal protein S9 contacts nucleotides 32-34 of peptidyl-tRNA. We have isolated mutants with defects in the C-terminus of S9 that induce + 1 frameshifting. Combinations of changes in tRNAcmo5UGGPro and S9 suggest that an interaction occurs between position 32 of the peptidyl-tRNA and the C-terminal end of S9. Together, our results suggest that the cause of frameshifting is an aberrant interaction between the peptidyl-tRNA and the P-site environment. We suggest that the “ribosomal grip” of the peptidyl-tRNA is pivotal for maintaining the reading frame.  相似文献   

3.
KMT2/Set1 is the catalytic subunit of the complex of proteins associated with Set1 (COMPASS) that is responsible for the methylation of lysine 4 of histone H3 (H3K4) in Saccharomyces cerevisiae. Whereas monomethylated H3K4 (H3K4me1) is found throughout the genome, di- (H3K4me2) and tri- (H3K4me3) methylated H3K4 are enriched at specific loci, which correlates with the promoter and 5′-ends of actively transcribed genes in the case of H3K4me3. The COMPASS subunits contain a number of domains that are conserved in homologous complexes in higher eukaryotes and are reported to interact with modified histones. However, the exact organization of these subunits and their role within the complex have not been elucidated. In this study we showed that: (1) subunits Swd1 and Swd3 form a stable heterodimer that dissociates upon binding to a modified H3K4me2 tail peptide, suggesting a regulatory role in COMPASS; (2) the affinity of the subunit Spp1 for modified histone H3 substrates is much higher than that of Swd1 and Swd3; (3) Spp1 has a preference for H3K4me2/3 methylation state; and (4) Spp1 contains a high-affinity DNA-binding domain in the previously uncharacterised C-terminal region. These data allow us to suggest a mechanism for the regulation of COMPASS activity at an actively transcribed gene.  相似文献   

4.
Eubacterial ribosomes stalled on defective mRNAs are released through a mechanism referred to as trans-translation, depending on the coordinated actions of small protein B (SmpB) and transfer messenger RNA (tmRNA). A series of tmRNA variants with deletions in each structural domain were produced. Their structures were monitored by enzymatic and chemical probes in vitro, in the presence and absence of SmpB. Dissociation constants between these RNAs and SmpB from Aquifex aeolicus were derived by surface plasmon resonance (SPR) combined with filter binding assays. Three independent experimental evidences, including filter binding assays, SPR, and concentration titrations of the RNA–protein reactivity changes toward structural probes, indicate that the binding site that has the highest affinity for the protein is located outside the tRNA domain, upstream of the internal tag. The minimal tmRNA fragment that contains this high affinity site for SmpB, and also contains another site of lower affinity, includes the tag reading frame and three downstream pseudoknots that form a ring structure in solution.  相似文献   

5.
During protein synthesis, many translating ribosomes are bound together with an mRNA molecule to form polysomes (or polyribosomes). While the spatial organization of bacterial polysomes has been well studied in vitro, little is known about how they cluster when cellular conditions are highly constrained. To better understand this, we used electron tomography, template matching, and three-dimensional modeling to analyze the supramolecular network of ribosomes after induction of translational pauses. In Escherichia coli, we overexpressed an mRNA carrying a polyproline motif known to induce pausing during translation. When working with a strain lacking transfer-messenger RNA, the principle actor in the “trans-translation” rescuing system, the cells survived the hijacking of the translation machinery but this resulted in a sharp modification of the ribosomal network. The results of our experiments demonstrate that single ribosomes are replaced with large amounts of compacted polysomes. These polysomes are highly organized, principally forming hairpins and dimers of hairpins that stack together. We propose that these spatial arrangements help maintain translation efficiency when the rescue systems are absent or overwhelmed.  相似文献   

6.
The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNAGln for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNAGln and tRNAGlu with glutamate. This ancient GluRS also separately differentiated to exclude tRNAGln as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNAGln and tRNAGlu recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.  相似文献   

7.
The human KIN17 protein is an essential nuclear protein conserved from yeast to human and expressed ubiquitously in mammals. Suppression of Rts2, the yeast equivalent of gene KIN17, renders the cells unviable, and silencing the human KIN17 gene slows cell growth dramatically. Moreover, the human gene KIN17 is up-regulated following exposure to ionizing radiations and UV light, depending on the integrity of the human global genome repair machinery. Its ectopic over-expression blocks S-phase progression by inhibiting DNA synthesis. The C-terminal region of human KIN17 is crucial for this anti-proliferation effect. Its high-resolution structure, presented here, reveals a tandem of SH3-like subdomains. This domain binds to ribonucleotide homopolymers with the same preferences as the whole protein. Analysis of its structure complexed with tungstate shows structural variability within the domain. The interaction with tungstate is mediated by several lysine residues located within a positively charged groove at the interface between the two subdomains. This groove could be the site of interaction with RNA, since mutagenesis of two of these highly conserved lysine residue weakens RNA binding.  相似文献   

8.
Mutations in the transpeptidase domain of penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae that reduce the affinity to beta-lactams are important determinants of resistance to these antibiotics. We have now analyzed in vitro and in vivo properties of PBP2x variants from cefotaxime-resistant laboratory mutants and a clinical isolate. The patterns of two to four resistance-specific mutations present in each of the proteins, all of which are placed between 6.6 and 24 Å around the active site, fall into three categories according to their positions in the three-dimensional structure. The first PBP2x group is characterized by mutations at the end of helix α11 and carries the well-known T550A change and/or one mutation on the surface of the penicillin-binding domain in close contact with the C-terminal domain. All group I proteins display very low acylation efficiencies, ≤ 1700 M− 1 s− 1, for cefotaxime. The second class represented by PBP2x of the mutant C505 shows acylation efficiencies below 100 M− 1 s− 1 for both cefotaxime and benzylpenicillin and contains the mutation L403F at a critical site close to the active serine. PBP2x of the clinical isolate 669 reveals a third mutational pathway where at least the two mutations Q552E and S389L are important for resistance, and acylation efficiency is reduced for both beta-lactams to around 10,000 M− 1 s− 1. In each group, at least one mutation is located in close vicinity to the active site and mediates a resistance phenotype in vivo alone, whereas other mutations might exhibit secondary effects only in context with other alterations.  相似文献   

9.
10.
The evolutionarily conserved PUF proteins stimulate CCR4 mRNA deadenylation through binding to 3′ untranslated region sequences of specific mRNA. We have investigated the mechanisms by which PUF3 in Saccharomyces cerevisiae accelerates deadenylation of the COX17 mRNA. PUF3 was shown to affect PAN2 deadenylation of the COX17 mRNA independent of the presence of CCR4, suggesting that PUF3 acts through a general mechanism to affect deadenylation. Similarly, eIF4E, the cap-binding translation initiation factor known to control CCR4 deadenylation, was shown to affect PAN2 activity in vivo. PUF3 was found to be required for eIF4E effects on COX17 deadenylation. Both eIF4E and PUF3 effects on deadenylation were shown, in turn, to necessitate a functional poly(A)-binding protein (PAB1) in which removal of the RRM1 (RNA recognition motif 1) domain of PAB1 blocked both their effects on deadenylation. While removal of the proline-rich region (P domain) of PAB1 substantially reduces CCR4 deadenylation at non-PUF3-controlled mRNA and correspondingly blocked eIF4E effects on deadenylation, PUF3 essentially bypassed this P domain requirement. These results indicate that the PAB1-mRNP structure is critical for PUF3 action. We also found that multiple components of the CCR4-NOT deadenylase complex, but not PAN2, interacted with PUF3. PUF3 appears, therefore, both to act independently of CCR4 activity, possibly through effects on PAB1-mRNP structure, and to be capable of retaining the CCR4-NOT complex.  相似文献   

11.
Ubiquitin-specific protease 7 (USP7) catalyzes the deubiquitination of several substrate proteins including p53 and Hdm2. We have previously shown that USP7, and more specifically its amino-terminal domain (USP7-NTD), interacts with distinct regions on p53 and Hdm2 containing P/AxxS motifs. The ability of USP7 to also deubiquitinate and control the turnover of HdmX was recently demonstrated. We utilized a combination of biochemistry and structural biology to identify which domain of USP7 interacts with HdmX as well as to identify regions of HdmX that interact with USP7. We showed that USP7-NTD recognized two of six P/AxxS motifs of HdmX (8AQCS11 and 398AHSS401). The crystal structure of the USP7-NTD:HdmXAHSS complex was determined providing the molecular basis of complex formation between USP7-NTD and the HdmXAHSS peptide. The HdmX peptide interacted within the same residues of USP7-NTD as previously demonstrated with p53, Hdm2, and EBNA1 peptides. We also identified an additional site on Hdm2 (397PSTS400) that interacts with USP7-NTD and determined the crystal structure of this complex. Finally, analysis of USP7-interacting peptides on filter arrays confirmed the importance of the serine residue at the fourth position for the USP7-NTD interaction and showed that phosphorylation of serines within the binding sequence prevents this interaction. These results lead to a better understanding of the mechanism of substrate recognition by USP7-NTD.  相似文献   

12.
Galectin-9 and galectin-8, members of beta-galactoside-binding animal lectin family, are promising agents for the treatment of immune-related and neoplastic diseases. The proteins consist of two carbohydrate recognition domains joined by a linker peptide, which is highly susceptible to proteolysis. To increase protease resistance, we prepared mutant proteins by serial truncation of the linker peptide. As a result, mutant forms lacking the entire linker peptide were found to be highly stable against proteolysis and retained their biological activities. These mutant proteins might be useful tools for analyzing the biological functions and evaluating the therapeutic potential of galectin-9 and galectin-8.  相似文献   

13.
Onchocerciasis or river blindness, caused by the filarial worm Onchocerca volvulus, is the world’s second leading infectious cause of blindness. In order to chronically infect the host, O. volvulus has evolved molecular strategies that influence and direct immune responses away from the modes most damaging to it. The O. volvulus GST1 (OvGST1) is a unique glutathione S-transferase (GST) in that it is a glycoprotein and possesses a signal peptide that is cleaved off in the process of maturation. The mature protein starts with a 25-amino-acid extension not present in other GSTs. In all life stages of the filarial worm, it is located directly at the parasite-host interface. Here, the OvGST1 functions as a highly specific glutathione-dependent prostaglandin D synthase (PGDS). The enzyme therefore has the potential to participate in the modulation of immune responses by contributing to the production of parasite-derived prostanoids and restraining the host’s effector responses, making it a tempting target for chemotherapy and vaccine development. Here, we report the crystal structure of the OvGST1 bound to its cofactor glutathione at 2.0 Å resolution. The structure reveals an overall structural homology to the haematopoietic PGDS from vertebrates but, surprisingly, also a large conformational change in the prostaglandin binding pocket. The observed differences reveal a different vicinity of the prostaglandin H2 binding pocket that demands another prostaglandin H2 binding mode to that proposed for the vertebrate PGDS. Finally, a putative substrate binding mode for prostaglandin H2 is postulated based on the observed structural insights.  相似文献   

14.
Dystrophin is a cytoskeletal protein that confers resistance to the sarcolemma against the stress of contraction-relaxation cycles by interacting with cytoskeletal and membrane partners. Apart from several proteins, membrane phospholipids are a partner of the central rod domain made up of 24 spectrin-like repeats, separated into sub-domains by four hinges. We previously showed that repeats 1 to 3 bind to membrane anionic phospholipids, while repeats 20 to 24 are not able to do so. We focus here on the phospholipid-binding properties of the major part of the central rod domain, namely, the sub-domain delineated by hinges 2 and 3 comprising 16 repeats ranging from repeat 4 to 19 (R4-19). We designed and produced multirepeat proteins comprising three to five repeats and report their lipid-binding properties as well as their thermal stabilities. When these proteins are mixed with liposomes including the anionic lipid phosphatidylserine, they form stable protein-vesicle complexes as determined by gel-filtration chromatography. The absence of an anionic lipid precludes the formation of such complexes. Spectroscopic analyses by circular dichroism and tryptophan fluorescence show that, while the α-helical secondary structures are not modified by the binding, protein trans conformation leads to the movement of tryptophan residues into more hydrophobic environments. In addition, the decrease in the molar ellipticity ratio at 222/208 nm as observed by circular dichroism indicates that lipid binding reduces the inter-helical interactions of multirepeat proteins, thus suggesting partly “opened” coiled-coil structures. Combining these results with data from our previous studies, we propose a new model of the dystrophin molecule lying along the membrane bilayer, in which the two sub-domains R1-3 and R4-19 interact with lipids and F-actin, while the distal sub-domain R20-24 does not exhibit any interaction. These lipid-binding domains should thus maintain a structural link between cytoskeletal actin and sarcolemma via the membrane phospholipids.  相似文献   

15.
Méndez Vidal C  Prahl M  Wiman KG 《FEBS letters》2006,580(18):4401-4408
Wig-1 is a p53-induced zinc finger protein. Here we show that human Wig-1 binds long (>or=23 bp) dsRNAs with 5'-overhangs. The first zinc finger domain is necessary but not sufficient for this dsRNA-binding in vitro. Wig-1 also binds dsRNA in living cells via zinc fingers 1 and 2. Both zinc fingers 1 and 2 are important for Wig-1-mediated growth suppression. Moreover, Wig-1 binds 21 bp dsRNAs with 3'-protruding ends. These findings demonstrate that human Wig-1 can bind different types of dsRNAs, including dsRNAs resembling small interfering RNAs (siRNAs) and microRNAs (miRNAs), and indicate that dsRNA binding has a role in Wig-1-mediated regulation of cell growth.  相似文献   

16.
Type I collagen is the most abundant protein in the human body, produced by folding of two α1(I) polypeptides and one α2(I) polypeptide into the triple helix. A conserved stem-loop structure is found in the 5′ untranslated region of collagen mRNAs, encompassing the translation start codon. We cloned La ribonucleoprotein domain family member 6 (LARP6) as the protein that binds the collagen 5′ stem-loop in a sequence-specific manner. LARP6 has a distinctive bipartite RNA binding domain not found in other members of the La superfamily. LARP6 interacts with the two single-stranded regions of the 5′ stem-loop. The Kd for binding of LARP6 to the 5′ stem-loop is 1.4 nM. LARP6 binds the 5′ stem-loop in both the nucleus and the cytoplasm. In the cytoplasm, LARP6 does not associate with polysomes; however, overexpression of LARP6 blocks ribosomal loading on collagen mRNAs. Knocking down LARP6 by small interfering RNA also decreased polysomal loading of collagen mRNAs, suggesting that it regulates translation. Collagen protein is synthesized at discrete regions of the endoplasmic reticulum. Using collagen-GFP (green fluorescent protein) reporter protein, we could reproduce this focal pattern of synthesis, but only when the reporter was encoded by mRNA with the 5′ stem-loop and in the presence of LARP6. When the reporter was encoded by mRNA without the 5′ stem-loop, or in the absence of LARP6, it accumulated diffusely throughout the endoplasmic reticulum. This indicates that LARP6 activity is needed for focal synthesis of collagen polypeptides. We postulate that the LARP6-dependent mechanism increases local concentration of collagen polypeptides for more efficient folding of the collagen heterotrimer.  相似文献   

17.
We have previously reported that synaptotagmin VI is present in human sperm cells and that a recombinant protein containing the C2A and C2B domains abrogates acrosomal exocytosis in permeabilized spermatozoa, an effect that was regulated by phosphorylation. In this report, we show that each individual C2 domain blocks acrosomal exocytosis. The inhibitory effect was completely abrogated by phosphorylation of the domains with purified PKCbetaII. We found by site-directed mutagenesis that Thr418 and/or Thr419 in the polybasic region (KKKTTIK) of the C2B domain--a key region for the function of synaptotagmins--are the PKC target that regulates its inhibitory effect on acrosomal exocytosis. Similarly, we showed that Thr284 in the polybasic region of C2A (KCKLQTR) is the target for PKC-mediated phosphorylation in this domain. An antibody that specifically binds to the phosphorylated polybasic region of the C2B domain recognized endogenous phosphorylated synaptotagmin in the sperm acrosomal region. The antibody was inhibitory only at early stages of exocytosis in sperm acrosome reaction assays, and the immunolabeling decreased upon sperm stimulation, indicating that the protein is dephosphorylated during acrosomal exocytosis. Our results indicate that acrosomal exocytosis is regulated through the PKC-mediated phosphorylation of conserved threonines in the polybasic regions of synaptotagmin VI.  相似文献   

18.
Rpn11 is a proteasome-associated deubiquitinating enzyme that is essential for viability. Recent genetic studies showed that Rpn11 is functionally linked to Rpn10, a major multiubiquitin chain binding receptor in the proteasome. Mutations in Rpn11 and Rpn10 can reduce the level and/or stability of proteasomes, indicating that both proteins influence its structural integrity. To characterize the properties of Rpn11, we examined its interactions with other subunits in the 19S regulatory particle and detected strong binding to Rpn3. Two previously described rpn3 mutants are sensitive to protein translation inhibitors and an amino acid analog. These mutants also display a mitochondrial defect. The abundance of intact proteasomes was significantly reduced in rpn3 mutants, as revealed by strongly reduced binding between 20S catalytic with 19S regulatory particles. Proteasome interaction with the shuttle factor Rad23 was similarly reduced. Consequently, higher levels of multiUb proteins were associated with Rad23, and proteolytic substrates were stabilized. The availability of Rpn11 is important for maintaining adequate levels of intact proteasomes, as its depletion caused growth and proteolytic defects in rpn3. These studies suggest that Rpn11 is stabilized following its incorporation into proteasomes. The instability of Rpn11 and the defects of rpn3 mutants are apparently caused by a failure to recruit Rpn11 into mature proteasomes.  相似文献   

19.
Human MID1 (midline-1) is a microtubule-associated protein that is postulated to target the catalytic subunit of protein phosphatase 2A for degradation. It binds alpha4 that then recruits the catalytic subunit of protein phosphatase 2A. As a member of the TRIM (tripartite motif) family, MID1 has three consecutive zinc-binding domains—RING (really interesting new gene), Bbox1, and Bbox2—that have similar ββα-folds. Here, we describe the in vitro characterization of these domains individually and in tandem. We observed that the RING domain exhibited greater ubiquitin (Ub) E3 ligase activity compared to the Bbox domains. The amount of autopolyubiquitinated products with RING-Bbox1 and RING-Bbox1-Bbox2 domains in tandem was significantly greater than those of the individual domains. However, no polyubiquitinated products were observed for the Bbox1-Bbox domains in tandem. Using mutants of Ub, we observed that these MID1 domain constructs facilitate Ub chain elongation via Lys63 of Ub. In addition, we observed that the high-molecular-weight protein products were primarily due to polyubiquitination at one site (Lys154) on the Bbox1 domain of the RING-Bbox1 and RING-Bbox1-Bbox2 constructs. We observed that MID1 E3 domains could interact with multiple E2-conjugating enzymes. Lastly, a 45-amino-acid peptide derived from the C-terminus of alpha4 that binds tightly to Bbox1 was observed to be monoubiquitinated in the assay and appears to down-regulate the amount of polyubiquitinated products formed. These studies shed light on MID1 E3 ligase activity and show how its three zinc-binding domains can contribute to MID1's overall function.  相似文献   

20.
In this report, we demonstrate that exonucleolytic turnover is much more important in the regulation of sRNA levels than was previously recognized. For the first time, PNPase is introduced as a major regulatory feature controlling the levels of the small noncoding RNAs MicA and RybB, which are required for the accurate expression of outer membrane proteins (OMPs). In the absence of PNPase, the pattern of OMPs is changed. In stationary phase, MicA RNA levels are increased in the PNPase mutant, leading to a decrease in the levels of its target ompA mRNA and the respective protein. This growth phase regulation represents a novel pathway of control. We have evaluated other ribonucleases in the control of MicA RNA, and we showed that degradation by PNPase surpasses the effect of endonucleolytic cleavages by RNase E. RybB was also destabilized by PNPase. This work highlights a new role for PNPase in the degradation of small noncoding RNAs and opens the way to evaluate striking similarities between bacteria and eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号