首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
Comparative study of fatty acid composition of total phospholipids, as well as of phosphatidylcholine and phosphatidylethanolamine from hepatopancreas and leg muscle was performed on several representatives of gasteropods (Gastropoda) molluscs and bivalve (Bivalvia) mussel (Mytilus edulus). The objects of our study were marine litorins (Littorina saxsatilis) adapted to different temperature conditions of White Sea and Barents Sea, freshwater lymnaea (Lymnaea stagnalis) infested by Trematoda and mussels from White Sea and Black Sea. It was shown that depending on the existence conditions of studied tissue or lipid, the maximal change is observed in the percentage of saturated acids (4-83 %), the percentage of unsaturated acids was less expressed (1-14 %) and the changes in unsaturation index (UI) did not exceed 20 % on average. It was supposed that observed quantitative bounds of UI change under the action of different external factors is utmost for maintenance of membrane fluidity necessary for normal vital activity of cell, particularly in studied ectothermic molluscs.  相似文献   

2.
Dynamics of Mya arenaria beds in two bights of the Chupa Inlet (Kandalaksha Bay, White Sea) were studied on a long-term basis. Observations were carried out at 1– to 3-year intervals from 1979 up to 1999. The studied soft-shell clam beds were characterised by a substantial instability of age structure. Since 1988, only one year-class has dominated in the beds while other generations have been scarce and recruitment was not observed. This pattern of Mya bed dynamics was related neither to interannual environmental changes nor to differential reproduction success or predation effects in the benthic assemblages. Favourable conditions for spat formation in 1988 (low abundance of other M. arenaria generations), as well as for juvenile survival during the following winter, resulted in high abundance of juveniles in both investigated locations in 1989. The mortality rate (μ) in this 1988 generation varied throughout the period of investigation and was related to age. The mortality level decreased for the first 2–4 years of the life cycle, then stabilised for the next 3–4 years, and eventually increased in subsequent years. Overall μ values ranged from 0 to 1.68 year–1. The oldest specimens observed were 17 years old and had a maximum shell length of 79 mm. Significant differences in average growth rates were observed between molluscs of different locations. Communicated by H.-D. Franke  相似文献   

3.
Dopamine- and noradrenaline-induced modifications of outward potassium currents were studied in identified neurons of the lesser parietal ganglion of adult (10–12 months) and old (22–24 months) molluscsLimnaea stagnalis. In the neurons of old molluscs, 2·10−5 M dopamine made activation of potassium channels of delayed current 2.5 times more frequent than in adult molluscs. Noradrenaline (5·10−5 M) significantly increased delayed outward potassium currents in adult molluscs and did not modify these currents in old molluscs. It is supposed that there are age-related modifications of the ratio between the active and passive components of potassium ion transport in the mechanism responsible for monoamine-induced reactions of a neuron.  相似文献   

4.
The horizontal heterogeneity of common zooplankton species in the Keretskaya Guba tidal estuary in the White Sea was studied. Based on an analysis of a series of simultaneously taken samples and the dispersion index, I w = σ2/[`(m)]\bar{m} (where σ2 is dispersion and [`(m)]\bar{m} is average population number), the existence of two and more levels of aggregation in most of the studied zooplankton species was found. The formation of patches of 1–20 m was most likely determined by biological causes, while patches some hundreds of meters long were formed due to the hydrodynamic conditions of the area.  相似文献   

5.
Based on the data from long-term observations on the development of fouling communities of mussel culture farms in the White Sea, an analysis of dynamics of population density of common polychaete species was carried out. The expansion of the polychaete Lepidonotus squamatus for the past 9 years was recorded. Cyclic variations of population density were revealed practically in all studied species. The duration of the period of these cycles varied from 7–8 years (L. squamatus and Amphitrite cirrata), 11–14 years (Nereis pelagica, Harmothoe imbricata, Eulalia viridis, Neoamphitrite figulus) and even about 20 years (Nereimyra punctata and Capitella capitata). Observable periodic variations in the abundance of polychaetes apparently were not related to long-term fluctuations of water temperature.  相似文献   

6.
This study was conducted to investigate the influence of salicylic acid (SA) on the growth and changes of nucleic acids, protein, photosynthetic pigments, sugar content and photosynthesis levels in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). The most significant changes in the content of nucleic acids and proteins was observed at the concentration 10−4 M SA between 8 and 12 day of cultivation. This concentration of SA increased the number of cells (about 40 %) and content of proteins (about 60 %) and its secretion to the medium. The slight stimulation of protein secretion occurred on the 12th day of cultivation at concentration 10−4 M, while in the range of 10−5 M to 10−6 M the protein secretion was inhibited. SA also stimulated the content of nucleic acids, especially RNA by 20–60 %, compared with the control. The most stimulating influence upon the contents of chlorophylls a and b (50–70 %), total carotenoids (25–57 %), sugar (27–41 %) and intensity of net photosynthesis (18–33 %) was found at 10−4 M of SA. At the concentration of 10−6 M SA the slight inhibition of growth and biochemical activity of the algae was recorded at the first days of cultivation.  相似文献   

7.
Temperature dependent changes in the mode of energy metabolism and in acid-base status were studied in the range from −1.7 to 26 °C in two populations of Arenicola marina collected in summer as well as in winter from intertidal flats of the North Sea (boreal) and the White Sea (subpolar). Extreme temperatures led to an accumulation of anaerobic end products, indicating the existence of both a low and a high critical temperature, beyond which anaerobic metabolism becomes involved in energy production. In summer animals from the North Sea the high critical temperature was found at temperatures above 20 °C, and the low critical temperature below 5 °C. Latitudinal or seasonal cold adaptation lead to a more or less parallel shift of both high and low critical temperature values to lower values. Between critical temperatures intracellular pH declined with rising temperature. Slopes varied between −0.012 and −0.022 pH- units/°C. In summer animals from the North Sea, the slope was slightly less than in White Sea animals, but differences appeared independent of the season. However, slopes were no longer linear beyond critical temperatures. A drop in intracellular pH at low temperatures coincided with the accumulation of volatile fatty acids in the body wall tissue of North Sea animals. A failure of active pHi adjustment is held responsible for the reduced ΔpHi/ΔT at temperatures above the high critical temperature. Extracellular pH was kept constant over the whole temperature range investigated. The ability of North Sea animals to adapt to temperatures beyond the critical temperature is poor compared to White Sea specimens. The larger range of temperature fluctuations at the White Sea is seen as a reason for the higher adaptational capacity of the subpolar animals. A hypothesis is proposed that among other mechanisms critical temperature values are set by an adjustment of mitochondrial density and thus, aerobic capacity. Accepted: 20 August 1996  相似文献   

8.
 The effect of an urban climate upon the spatial and temporal distribution of Deuteromycete spores was studied during 1991 using Burkard volumetric spore traps in two areas of Mexico City with different degrees of urbanization. Deuteromycete conidia formed the largest component of the total airborne fungal spore load in the atmosphere of Mexico City, contributing 52% of the spores trapped in an urban-residential area (southern area) and 65% of those in an urban-commercial area (central area). Among the most common spore types, Cladosporium and Alternaria showed a marked seasonal periodicity with significant differences in concentration (P<0.05) between the dry and wet seasons. Maximum conidial concentrations were found during the end of the wet season and the beginning of the cool, dry season (October–December). Daily mean concentrations of the predominant airborne spore types did not differ significantly between the southern and central areas. Daily mean spore concentrations were significantly correlated (P<0.05) in southern and central areas with maximum temperature (south, r = –0.35; central, r = –0.40) and relative humidity (south, r = 0.43; central, r = 0.29) from the previous day. Moreover, multiple regression analysis of spore concentrations with several meteorological factors showed significant interactions between fungal spores, relative humidity and maximum temperature in both areas. The diurnal periodicity of Cladosporium conidia characteristically showed two or three peaks in concentration during the day at 0200–0400, ∼ 1400 and 2000–2200 hours, while that of Alternaria showed only one peak (1200 to 2000 hours) in both areas. Maximum concentrations of these spores generally occurred 2–4 h earlier in the southern than in the central area. The lag in reaching maximum concentrations in the central area probably resulted from differences in the local conditions between the study areas, and from spores transported aerially into the city from distant sources. The analysis of maximum hourly concentrations of Cladosporium and Alternaria spores during 1 month of the dry season (February), and another month of the wet season (September) showed significant differences between the two study areas. Environmental factors and sources (green areas) affected diurnal changes in conidial concentration in the southern area (urbanization index, UI, 0.25), but not in the central area (UI 0.97). In general, spore concentrations were greatest in the southern area when relative humidities were low, and temperatures and wind velocities were high. It was difficult to establish effects of climatic factors on the spore concentration in the city centre. This probably results from the large amounts of air pollution, the heat island phenomenon, and from the distant origin of trapped conidia obviating aerial transport. Nevertheless, the seasonal and diurnal distributions of conidia found were similar to those reported for other tropical regions of the world. Received: 13 August 1996 / Accepted: 4 December 1996  相似文献   

9.
The Salton Sea currently suffers from several well-documented water quality problems associated with high nutrient loading. However, the importance of phosphorus regeneration from sediments has not been established. Sediment phosphorus regeneration rates may be affected by benthic macroinvertebrate activity (e.g. bioturbation and excretion). The polychaete Neanthes succinea (Frey and Leuckart) is the dominant benthic macroinvertebrate in the Salton Sea. It is widely distributed during periods of mixing (winter and spring), and inhabits only shallow water areas following development of anoxia in summer. The contribution of N. succinea to sediment phosphorus regeneration was investigated using laboratory incubations of cores under lake temperatures and dissolved oxygen concentrations typical of the Salton Sea. Regeneration rates of soluble reactive phosphorus (SRP) were lowest (−0.23–1.03 mg P m−2 day−1) under saturated oxygen conditions, and highest (1.23–4.67 mg P m−2 day−1) under reduced oxygen levels. N. succinea most likely stimulated phosphorus regeneration under reduced oxygen levels via increased burrow ventilation rates. Phosphorus excretion rates by N. succinea were 60–70% more rapid under reduced oxygen levels than under saturated or hypoxic conditions. SRP accounted for 71–80% of the dissolved phosphorus excreted under all conditions. Whole-lake SRP regeneration rates predicted from N. succinea biomass densities are highest in early spring, when the lake is mixing frequently and mid-lake phytoplankton populations are maximal. Thus, any additional phosphorus regenerated from the sediments at that time has potential for contributing to the overall production of the lake. Guest Editor: John M. Melack Saline Water and their Biota  相似文献   

10.
We have studied the seasonal dynamics of abundance and feeding characteristics of three species of calanoid copepods (Acartia spp., Centropages hamatus and Temora longicornis) in the White Sea from the surface water layer (0–10 m), in order to assess their role in the pelagic food web and to determine the major factors governing their population dynamics during the productive season. These species dominated in the upper water layer (0–10 m) from June through September, producing up to 3 generations per year. Data on the food spectra revealed all species to be omnivorous; but some inter- and intraspecific differences were observed. Generally, copepods consumed diatoms, dinoflagellates and microzooplankton. The omnivory index ‘UC’ (i.e., fatty acid unsaturation coefficient) varied from 0.2 to 0.6, which implied ingestion of phytoplankton. The different degree of selectivity on the same food items by the studied species was observed, and therefore, successful surviving strategy with minimal overlapping could be assumed. In total, the populations of the three studied copepod species grazed up to 2.15 g C m−2 day−1 and released up to 0.68 g C m−2 day−1 in faecal pellets. They consumed up to 50% of particulate organic carbon, or up to 85% of phytoplankton standing stock (in terms of Chl. a), and thus played a significant role in the transformation of particulate organic matter. Seasonal changes in abundance of the studied species depended mostly on water temperature in the early summer, but were also affected by food availability (Chl. a concentration) during the productive season.  相似文献   

11.
Third-instar larvae of the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae) survive extended periods in winter during which tissue water is frozen. Both low temperature and reduced water activity during freezing present challenges for the structural integrity of cellular lipids. Fatty acids of both phospholipids and triacylglycerols from fat body cells of E. solidaginis were analyzed throughout fall and early winter, a period that encompasses the acquisition of freeze-tolerance, to determine if adaptations to freezing include changes in fatty acid unsaturation. The five most abundant fatty acids from both fractions were (in decreasing order) oleic (40–65%), palmitoleic (18–20%), palmitic (12–17%), linoleic (5–10%), and stearic acids (4 –7%). This represents a typical complement of Dipteran fatty acids, although oleic acid levels were higher in E. solidaginis than those reported from other Dipterans (˜28%; Downer 1985). From September to November, monounsaturates increased from 59 to 70% in phospholipids at the expense of saturated fatty acids (25% –20%) suggesting activation of a Δ9-desaturase enzyme. These changes resulted in an increase in the ratio of unsaturated to saturated fatty acids (U/S) from 3.0 to 4.2, although there was no change in the average number of double bonds per fatty acid (unsaturation index, UI ≈ 1.2 in phospholipids and 0.9 in triacylglycerols throughout the season). These changes were temporally correlated to decreasing ambient temperatures and increasing larval and fat body cell freeze-tolerance. Accepted: 31 October 1996  相似文献   

12.
Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25–50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17–63% and increase Secchi depths (SD) by 38–97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70–90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005.  相似文献   

13.
The study reported here is part of an ongoing effort to establish sensitive and reliable biomonitoring markers for probing the coastal marine environment. Here, we report comparative measurements of a range of histological, cellular and sub-cellular parameters in molluscs sampled in polluted and reference sites along the Mediterranean coast of Israel and in the northern tip of the Gulf of Aqaba, Red Sea. Available species enabled an examination of conditions in two environmental 'compartments': benthic (Donax trunculus) and intertidal (Brachidontes pharaonis, Patella caerulea) in the Mediterranean; pelagic (Pteria aegyptia) and intertidal (Cellana rota) in the Red Sea. The methodology used provides rapid results by combining specialized fluorescent probes and contact microscopy, by which all parameters are measured in unprocessed animal tissue. The research focused on three interconnected levels. First, antixenobiotic defence mechanisms aimed at keeping hazardous agents outside the cell. Paracellular permeability was 70–100% higher in polluted sites, and membrane pumps (MXRtr and SATOA) activity was up to 65% higher in polluted compared to reference sites. Second, intracellular defence mechanisms that act to minimize potential damage by agents having penetrated the first line of defence. Metallothionein expression and EROD activity were 160–520% higher in polluted sites, and lysosomal functional activity (as measured by neutral red accumulation) was 25–50% lower. Third, damage caused by agents not sufficiently eliminated by the above mechanisms (e.g. single-stranded DNA breaks, chromosome damage and other pathological alterations). At this level, the most striking differences were observed in the rate of micronuclei formation and DNA breaks (up to 150% and 400% higher in polluted sites, respectively). The different mollusc species used feature very similar trends between polluted and reference sites in all measured parameters. Concentrating on relatively basic levels of biological organization—the molecular and cellular level—the parameters measured may have the capacity not only for biomonitoring environmental quality, but also for early warning.Communicated by H. von Westernhagen, A. Diamant  相似文献   

14.
Inter-annual variability in the diet of Chinstrap penguins (Pygoscelis antarctica) at Laurie Island (South Orkney Islands) and 25 de Mayo/King George and Nelson Islands (South Shetland) was examined based on stomach contents of adults during the 2002/2003–2006/2007 and 2002/2003–2004/2005 breeding seasons, respectively. Krill (Euphausia superba) dominated the diet as frequency of occurrence (in 100% of samples), number (>99%), and percentage contribution in weight (>94.8%). Other prey items were minor and varied between years. The weight of stomach contents was significantly different. The percentage in weight of whole krill was used to compare the feeding conditions across seasons. It differed significantly at the three sites studied. Distribution of krill size varied among years and localities, showing different krill availability for penguins.  相似文献   

15.
 The fatty acid compositions of the seed oils from ten pine species have been established by capillary gas-liquid chromatography of the methyl esters. With regard to either normal fatty acids or Δ5-olefinic acids, the general pattern of fatty acids did not differ from that of other pine seed oils reported previously. The main fatty acid was linoleic (9,12–18:2) acid (44.4–57.1%), followed by either oleic (9–18:1) acid (13.4–24.5%) or pinolenic (5,9,12–18:3) acid (1.5–25.2%). When applying multivariate analyses to the chemometric data (13 variables) of 49 pine species (ca. 40% of the living pine species), it was possible to distinguish between several sections: Pinea, Longifolia, Halepensis, Ponderosa-Banksiana, Sylvestris, and Cembra. The latter section was clearly divided into two sub-groups. A few species that presented a low overall content of Δ5-olefinic acids, and that grow in warm-temperate regions, were isolated from the bulk of other pine species. It is hypothesized that Δ5-olefinic acids might be related to cold-acclimation. Received: 5 June 1997 / Accepted: 17 August 1997  相似文献   

16.
Comparative analysis of variability of seven microsatellite loci—Gmo3, Gmo-G12, Gmo-G18, Gmo19, Gmo34, Gmo35 and Pgmo32—was performed for the Greenland cod Gadus ogac, Pacific cod G. macrocephalus, Atlantic cod G. morhua, and White Sea cod G. morhua marisalbi. High genetic identity was observed between the Greenland cod and Pacific cod (I = 0.9520). Pair analysis of genetic differentiation was performed on the studied microsatellite loci according to θ (analogue of F ST). The Greenland cod differed significantly from the Pacific, Atlantic, and the White Sea cod; however, the differentiation level varied. The lowest value was observed for the pair Greenland cod-Pacific cod (0.123), and the highest levels were registered for the pairs Greenland cod-Atlantic cod (0.605) and Greenland cod-White Sea cod (0.535).  相似文献   

17.
 Anaerobic metabolism and changes in the osmotic concentration of extravisceral fluid were studied in the White Sea periwinkles (Littorina littorea, Littorina saxatilis and Littorina obtusata) during freshwater exposure. Resistance to hypoosmotic stress increased in the order: L. obtusata < L. saxatilis < L. littorea. Our data suggest that osmotic shock is not a primary reason for mortality of the periwinkles under these conditions. During environmental anaerobiosis, considerable succinate accumulation (up to 10–19 μmol g−1 wet weight), and depletion of phosphagen and ATP pools were found in the studied species. Other metabolic end products (alanopine, strombine, lactate, acetate or propionate) were not detected. Succinate accumulation and net ATP breakdown were the fastest in the least resistant species, L. obtusata, and slowest in the most resistant, L. littorea. Rate of ATP turnover decreased during freshwater exposure in L. littorea and L. saxatilis, but not in L. obtusata. Our data suggest that differential resistance of three studied Littorina spp. to extreme hypoosmotic stress may be related to their different abilities to reduce metabolic rate and ATP turnover during sustained anoxia. Species-specific variations in anaerobic capacity of Littorina spp. are discussed in relation to their vertical distribution, size and ecology. Accepted: 4 October 1999  相似文献   

18.
Carbon and nitrogen balance in Acorus calamus, a wetland species colonising littoral zones with a high trophic status, was studied under experimental conditions using water or sand culture with a defined composition of the nutrient solution. Influence of graded level of N (1.86, 7.5 and 18.6 mM) and/or forms of N (NH4+ versus NO 3) on the content of non-structural carbohydrates, free amino acids, total C, and total N was studied in Acorus rhizomes and roots to find possible connection with a reduced growth of Acorus plants under high N and NH4+–N nutrition described in our previous study [Vojtíšková et al., 2004. Hydrobiologia 518: 9–22]. High N availability and pure NH4+–N nutrition affected the C/N balance of rhizome and root systems of Acorus in a similar way. NH4+–N was the only form of N elevated under the high N treatment. The major proportion of the total non-structural carbohydrates (TNC) was starch (91–93% and 51–64% in rhizomes and roots, respectively). The content of starch was significantly and and negatively affected by high N availability (P = 0.001), as well as by NH4+–N nutrition (P=0.001). Amounts of simple soluble carbohydrates (sucrose, glucose, and fructose) were negligible in comparison to starch in rhizomes and branched roots (up to 5% of TNC), while roots without developed lateral roots (unbranched) contained up to 33% of TNC in the form of simple soluble sugars. Moreover, high hexoses/sucrose ratio, low starch/soluble sugars ratio, high content of N, and low C/N ratio support the notion that unbranched roots are metabolically active young roots with tissue differentiation in progress. A high content of free amino acids, typically with dominance of N-rich amino acids (Arg-46%, Gln-8%, Asn-7%), was found simultaneously with a low carbohydrate content under high N supply, which indicates that NH4+ received is effectively incorporated into the organic form by this species. Since the decrease in carbohydrate content was not accompanied by luxurious growth, other possible carbon consuming processes were discussed in relation to NH4+ nutrition. More dramatic changes in total N than C were found under high N availability resulting a shift in C/N ratio in favour of N. Although the shift towards N metabolism was obvious, no serious carbohydrate depletion occurred, which could explain the reduced growth of Acorus plants under high N and sole NH4+–N nutrition described previously.  相似文献   

19.
The biodiversity and spatial distribution of macrofauna biomass are studied for 12 sites of stonesand littoral in the Neva Estuary in 2002–2005. The highest biodiversity has been observed for chironomids and oligochaetes in the Neva Bay (36% and 24% of total species number) and in the eastern Gulf of Finland (33% and 23%). Amphipods (≤89%), molluscs (≤61%), and chironomids (≤37%) dominate by biomass. The biomass spatial distribution vary dramatically from 9 to 37 g m−2 in the freshwater Neva Bay and from 1 to 68 g m−2 for the other Neva Estuary areas. The bottom fauna biomass in the Neva Bay is significantly lower than in the 1980–1990’s and constitutes 20–50% of the biomass previously observed. We explain such a significant decrease by a reduction of the insects and aborigine crustaceans Gammarus lacustris Sars and Asellus aquaticus L. The invasive amphipod species Gmelinoides fasciatus (Stebbing) dominated by biomass for the study period (3.8–15.6 g m−2, or >30% of total macrozoobenthos biomass).  相似文献   

20.
Growth and emission characteristics of the luminescent bacterium Photobacterium phosphoreum strain KM MGU 331 originating from the White Sea and isolated from the intestine of a bottom-dwelling fish, the European sculpin, Myoxocephalus scorpius, were analyzed. The strain is characterized by a high rate of colony formation and high intensity of light emission on agarized medium at 4° C as well as by highly efficient (5 × 105 quanta s−1 cell−1) and prolonged (over 100 h) light generation upon submerged cultivation at 20°C. The acidic shift of pH in the medium didn’t exceed 0.3 pH units. Effects of temperature, pH, and sodium chloride concentration on emission characteristics of intact photobacterium cells were studied. The optimal temperature for luminescence was found to be 15°C. The maximum luminescence activity was stable in a wide pH range from 7.0 to 9.0. Luminescence occurred within the range of 0.2–3.8% NaCl with the maximum at 2.5%. The results obtained confirm the literature data suggesting that luminescent bacteria adapted to low-temperature conditions possess a highly conjugated system of electron transfer to luciferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号